Return to search

Rotational excitation of methanol by helium at interstellar temperatures

Calculations have been performed to obtain accurate cross-sections and thermally averaged rate coefficients for the rotational excitation of methanol by helium, using the Coupled States quantum-mechanical approach. Transitions within the ground and first torsionally excited states of A and E- type methanol were considered. The 'propensity rules' governing the collisional transitions were examined and compared with the results of microwave double resonance experiments. Predictions are made of line intensity ratios which are sensitive to the density of the He perturber and which lend themselves to the determination of the perturber densities in astrophysically interesting regions of molecular clouds.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:247581
Date January 2002
CreatorsPottage, James
PublisherDurham University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.dur.ac.uk/3756/

Page generated in 0.0019 seconds