Return to search

Atomic vapours filled hollow core photonic crystal fibre for magneto-optical spectroscopy

This thesis describes developments in atomic vapour loading in hollow core photonic crystal fibre (HC-PCF) for fabrication of atomic vapour loaded photonic microcells (PMC). These developments have been targeted at addressing some of the issues associated with loading atomic vapours in confined waveguiding geometries such as increased dephasing and physio-chemical wall absorptions. Atomic vapour loaded HC-PCF and PMC’s have applications in laser metrology, coherent optics and magneto optical spectroscopy. State of the art HC-PCF have been fabricated for loading with atomic vapour including both photonic bandgap (PBG) guiding and inhibited coupling (IC) hypocycloidal core shape Kagome HC-PCF. Record loss of 70 dB/km has been achieved in IC hypocycloid core shape Kagome HC-PCF in the spectral region centred at 800 nm. This fibre retains excellent single mode propagation combined with large core and increased optical bandwidth in comparison with specialist PBG HC-PCF optimised for operation around 800 nm. Aluminosilicate sol-gel coatings have been developed and successfully applied to the inner core wall of HC-PCF’s to reduce the atomic vapour surface interaction. Confining atomic vapours in micron scaled HC-PCF results in increased dephasing rates because of the frequent atom wall collisions. Anti relaxation coating materials have been applied to the inner core wall and the longitudinal relaxation time has been measured in coated and uncoated fibres utilising a magneto optical technique. Additionally sub Doppler transparencies are investigated in anti relaxation coated and uncoated HC-PCF.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:616871
Date January 2014
CreatorsBradley, Thomas David
ContributorsBenabid, Abdelfatah
PublisherUniversity of Bath
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.003 seconds