Return to search

Novel materials for Yb and Er-Yb doped microchip lasers

The objective of this thesis has been to investigate novel host material configurations for high-power end-pumped Er-Yb co-doped, or Yb doped microchip lasers and try to increase their performance. In Er-Yb co-doped systems, the main limitation is the thermal shortcomings of the phosphate glass host material. The thesis presents some novel results that contribute to the search for a crystalline replacement. In Yb doped systems, most end-pumped schemes reported have been using relatively low-power single-emitter diodes. The thesis presents experiments with Yb:KGW microchips end-pumped by high-power diode bars. Another common limitation of end-pumped Yb microchip lasers is the thermal lens that destabilizes the cavity and decreases the beam quality. The approach to reduce the thermal lens by using an athermal propagation direction has been evaluated and the results are presented in the thesis. In the search for a crystalline host material for Er-Yb systems, borates have been found increasingly interesting. Consequently, we started out by investigating Gadolinium-calcium-oxoborate, GdCOB, which could be grown in platinum crucibles. It was found that the cw performance of such monolithic microchips is quite comparable to glass hosts in terms of slope efficiency, but the threshold is significantly larger. As for Q-switched performance, which is essential to most Er-Yb applications, the first efficient Q-switched results with a crystalline host is presented in the thesis. Similar to the cw regime, the slope efficiencies are comparable to glass, while the threshold is quite high. However, the perhaps most important parameter, maximum output power before thermal fracture, is neither significantly improved nor worsened compared with phosphate glass. This is believed to be due to higher threshold and a stronger thermal expansion that negates the benefit of a thermal conductivity that is only 2-3 times higher. To find a host material that could withstand higher pump powers, we turned our attention to the double-tungstates KGW and KYW, which have higher thermal conductivity and higher cross-sections. They have, however, energy level lifetimes which differ significantly from glass or borates and as a consequence, a thorough spectroscopic investigation has been undertaken to optimize dopant concentrations. Laser experiments on crystals with dopant concentrations based on this investigation are expected in the near future. When pumping Yb:KGW with a high-power diode bar, we achieved output powers of 9 – 12.4 W under different experimental conditions with incident powers of 18.3 – 26 W. The incident power of 26 W in one design was enough to fracture the crystal. Using a crystal cut for propagation along an athermal direction and comparing it with an identical b-cut crystal, we found that the thermal lens in the athermally oriented crystal was about a factor two weaker at the same absorbed power. / QC 20101116

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-3874
Date January 2006
CreatorsHellström, Jonas
PublisherKTH, Fysik, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-FYS, 0280-316X ; 2006:19

Page generated in 0.0019 seconds