Return to search

Towards Pancreatic β-Cell Regeneration: Modulating Islet Microenvironment and Identifying Markers of β-Cell Maturation

Regeneration of endogenous β-cells is a promising therapy to treat diabetes, but there are considerable gaps in our understanding of the microenvironmental signals necessary to stimulate β-cell proliferation and the unique ways human β-cells differ from rodents. Our group previously modulated the islet microenvironment using a mouse model in which vascular endothelial growth factor A (VEGF-A) overexpression causes β-cell loss and endothelial cell (EC) expansion, followed by β-cell proliferation and regeneration that requires infiltrating macrophages. To determine the role of proliferative and quiescent ECs, we conditionally inactivated the key receptor mediating VEGF-A signaling, VEGFR2, in ECs and found that EC signaling was necessary for maximal macrophage recruitment and phenotype activation. We also showed that ablation of VEGFR2 in quiescent ECs during the β-cell regenerative phase induced rapid vessel regression that promoted β-cell proliferation, possibly mediated by growth factor release from the extracellular matrix. Extending these findings to human pancreas development, we determined that intra-islet EC area was greatest during the first year of postnatal life and coincided with the peak of β-cell proliferation, suggesting that vascular arrangement or EC-derived signals may impact human β-cell proliferation. Next, to advance the methodologies for studying human islets, we identified two molecular markers of developing and mature human β-cells. Secretory granule membrane major glycoprotein 2 (GP2) marks a population of multipotent pancreatic progenitor cells in the neonatal human pancreas, and can be utilized to improve efficiency of generating β-like cells from stem cells. Nucleoside triphosphate diphosphohydrolase 3 (NTPDase3) is a cell surface marker of adult human β-cells, and is a unique tool for isolating live β-cells by flow cytometry and performing in vivo β-cell imaging. These two markers will further our knowledge of islet development and allow us to assess β-cell gene expression and mass during the disease process, which we demonstrated by utilizing our islet cell isolation strategy to reveal transcriptional dysregulation in α-cells from donors with type 1 diabetes. Together, this work provides a framework for future efforts aimed at promoting β-cell regeneration and increasing functional β-cell mass.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03232018-170107
Date26 March 2018
CreatorsSaunders, Diane Caitlin
ContributorsDavid Jacobson, Ph.D., Antonis Hatzopoulos, Ph.D., Ambra Pozzi, Ph.D., Roland Stein, Ph.D., Alvin C. Powers, M.D.
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-03232018-170107/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds