本論文對炔銀化合物提出系統性的合成和結構硏究,使用一種新型的多核屬的超分子合成子,從而建構出一系配位元網絡。 / 我們開發出同的結晶技術,在PhC≡C⊃Agn (n = 3, 4, 5)超分子合成子,通過加入同銀鹽,從而相對地獲得獲得銀鏈4AgC≡CPh・10AgCF₃CO₂・8DMSO (4),層銀銀平面AgC≡CPh・AgNO₃ (1) 和2AgC≡CPh・AgNO₃ (2),粗銀柱5AgC≡CPh・AgNO₃AgCF₃SO₃・2DMSO (5),陽子銀柱[Ag₅(PhC≡C)₄(DMSO)₂]X (X = ClO₄, BF₄, PF₆, AsF₆ and SbF₆) (3)。 / 上述結果鼓我們展開進一步的硏究,通過改變芳香環上取代基的性質或位置 (F, Cl, Br, I, Me, C(=O)CH₃, NO₂ 和 C≡N) 產出同的銀結構,如鏈,柱,帶,層,三維多孔配位聚合物,以及多面體銀柱。如,化合物[(NO₃)@Ag₁₅(C≡CC₆H₄F-2)₁₀](NO₃)₄ (15)內有一個硝酸子作為模板所組成的十五核橄欖形銀簇多面體。此 Ag₁₅簇可接在一起,形成一條銀鏈。個硝酸子被包裏在一個 Ag₂₆花生雙中,花生銀雙繫在一起並形成一條多面體銀柱[(NO₃)₂@Ag₂₆(C≡CC₅H₄Me-2)₁₆](NO₃)₈ (23)。 / 在炔銀超分子合成子中,銀烯基和銀氰基相互作用發揮重要作用生成二維有機銀網絡AgC≡CCH₂OC₆H₄(CH=CH₂-2) · 6AgCF₃CO₂ · 3H₂O (31) 和2AgC≡CC₆H₄(C≡N-4) · 4AgO₂CCF3 · 2DMSO · H₂O (36)。 / 多環芳烴(PAHs)中的 π 電子體系具有鍵合屬子的能。此陽子與 π 電子間的相互作用提供一個潛在有效的做法去建新型固態結構。我們的構思是硏究 π-π 堆積和銀雜環作用,在RC≡C⊃Agn (n = 4, 5; R = 萘基或喹啉基) 超分子合成子建設配位聚合物。在(C₁₀H₇C≡C-1)Ag · 3AgO₂CCF₃ · 3H₂O (38) 和 (C₁₀H₇C≡C-2)Ag · 3AgO₂CCF₃ · 2H₂O · MeCN (39) 中,Ag-π 作用成功引進在炔銀超分子合成子系統。分子間的 π-π 堆積作用有助於炔銀化合物的超分子合成子組裝 Ag(1-NC₉H₆C≡C-2) · 3AgO₂CCF₃ · 3H₂O (44) 和 Ag(1-NC₉H₆C≡C-4) · 3AgO₂CCF₃ · 2H₂O (47)。 / 傳統上,陰子模板是合成高核密堆積銀簇合物的簡方法。銀簇合物的核密堆積可以通過調整陰子模板的大小和使用同炔基配體。在使用巨型多酸(POMs)陰子,Mo₆O₂₂⁸⁻,形成一個龐大的十核炔銀簇合物後,我們硏究出另一種方法合成高核密堆積銀簇合物。一個形十二面體十四核炔銀簇合物通過在溶液中的重新組裝過程產生出三十八核炔銀簇合物,把在小銀簇合物中的氯模板轉化為偽八面體Cl₆Ag₈核心的巨型簇合物 Ag₃₈C₁[₆(tBuC≡C)₂₀(ClO₄)₁₂ · Et₂O (48) 和Ag₃₈C₁₆(chxC≡C)₂₀(ClO₄)₁₂ · 1.5Et₂O (49). / This thesis presents a systematic synthetic and structural study of silver(I) ethynide complexes employing a new kind of polynuclear metal-ligand supramolecular synthon for the construction of silver(I) coordination networks. / We have developed different crystallization techniques in the supramolecular assembly of the Ph-C≡C⊃Ag[subscript n] (n = 3, 4, 5) metal-ligand synthon and various anions to obtain an infinite silver(I) chain in 4AgC≡CPh10AgCF₃CO₂・8DMSO (4), silver(I) layers in 2AgC≡CPh・AgNO₃(2) and AgC≡CPh・AgNO₃ (1), a thick silver(I) column in 5AgC≡CPh・AgNO₃・AgCF₃SO₃・2DMSO (5), and cationic silver(I) columns in [Ag₅(PhC≡C)₄(DMSO)₂]X (X = ClO₄, BF₄, PF₆, AsF₆ and SbF₆) (3). / The above results encouraged us to carry out further investigation through variation of the nature or position of substituents (F, Cl, Br, I, Me, C(=O)CH₃, NO₂ and C≡N) on the aromatic ring to yield silver(I) chain, column, ribbon, layer, and 3D porous coordination polymers, as well as a polyhedral silver(I) column. For example, an oliveshaped Ag₁₅ core exists in [(NO₃)@Ag₁₅(C≡CC₆H₄F-2)₁₀](NO₃)₄ (15), in which the encapsulated nitrate ion acts as a template for the formation of the Ag₁₅ cluster. Such Ag₁₅ clusters are then joined together to form a polymeric silver(I) chain. Peanut-shaped silver(I) double cages, each formed from two nitrate ions encapsulated within a Ag₂₆ cage, are linked together to form a polyhedral silver(I) chain in [(NO₃)₂@Ag₂₆(C≡CC₅H₄Me-2)₁₆](NO₃)₈ (23). / The silver(I)-ethynide supramolecular synthon participating in silver(I)vinyl and silver(I)cyano interactions plays an important role to generate 2-D silver-organic networks in AgC≡CCH₂OC₆H₄(CH=CH₂-2) · 6AgCF₃CO₂ · 3H₂O (31) and 2AgC≡CC₆H₄(C≡N-4) · 4AgO₂CCF3 · 2DMSO · H₂O (36). / The π-electron system of polycyclic aromatic hydrocarbons (PAHs) is known to be capable of bonding to metal ions. The exploitation of such cation-π interactions provides a potentially fruitful approach to building novel solid-state architectures. Our conceived idea is to investigate the π-π stacking and silver(I)-heteroaromatic interactions for the construction of coordination polymers using the R-C≡C⊃Ag[subscript n] (n = 4, 5; R = naphthalenylethynide or quinolinylethynide) supramolecular synthon. In the compounds (C₁₀H₇C≡C-1)Ag · 3AgO₂CCF₃ · 3H₂O (38) and (C₁₀H₇C≡C-2)Ag · 3AgO₂CCF₃ · 2H₂O · MeCN (39), silver-π interaction has been successfully introduced into silver(I)ethynide systems. Intermolecular π-π interaction contributes to the assembly of supramolecular synthons in compounds Ag(1-NC₉H₆C≡C-2) · 3AgO₂CCF₃ · 3H₂O (44) and Ag(1-NC₉H₆C≡C-4) · 3AgO₂CCF₃ · 2H₂O (47). / Traditionally, anion templates are used in a facile approach for the synthesis of high-nuclearity silver(I) clusters. The cluster nuclearity can be controlled by adjusting the size of the templating anions and by using different alkynyl ligands. After using the giant polyoxometalates (POMs) anion, Mo₆O₂₂⁸⁻, to form a large Ag₆₀ alkynyl cluster, we have developed another approach to synthesize high-nuclearity silver(I) clusters. Generation of a Ag₃₈ ethynide cluster from a rhombic dodecahedral Ag₁₄ ethynide cluster as precursor occurs in solution via a re-assembly process that involves transformation of the encapsulated chloride template in the small cluster into a pseudo-Oh Cl6Ag8 core in the giant cluster complexes Ag₃₈C₁₆([superscript t]BuC≡C)₂₀(ClO₄)₁₂ · Et₂O (48) and Ag₃₈C₁₆(chxC≡C)₂₀(ClO₄)₁₂ · 1.5Et₂O (49). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Cheng, Ping Shing. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 216-225). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Chapter Acknowledgment --- p.i / Chapter Abstract --- p.ii / Chapter Table of Contents --- p.vi / Chapter Index of Compounds --- p.viii / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Coordination Polymers and Supramolecular Architectures --- p.1 / Chapter 1.1.1 --- Influence of Metal Cations --- p.2 / Chapter 1.1.2 --- Influence of Spacer Ligands --- p.3 / Chapter 1.1.3 --- Influence of Counter Anions --- p.4 / Chapter 1.1.4 --- Influence of Crystallization Techniques --- p.6 / Chapter 1.2 --- Argentophilic Interaction --- p.7 / Chapter 1.2.1 --- Multinuclear Silver-Ethynide Aggregates and Discrete Molecules --- p.9 / Chapter 1.2.1.1 --- Silver(I)-Ethynide Aggregates to Multi-dimensional Structures --- p.10 / Chapter 1.2.1.2 --- High-Nuclearity Homo- and Hetero-d¹° Metal Alkynyl Clusters --- p.13 / Chapter 1.2.2 --- Argentophilic chain and column --- p.15 / Chapter 1.2.3 --- Argentophilic layer --- p.18 / Chapter 1.3 --- Supramolecular Synthons in Crystal Engineering --- p.20 / Chapter 1.3.1 --- Coordination Chemistry of silveralkynyl complexes --- p.22 / Chapter 1.3.2 --- Coordination Chemistry of silveralkene complexes --- p.25 / Chapter 1.3.3 --- Coordination Chemistry of silveraromatic complexes --- p.26 / Chapter 1.4 --- Research strategy and Plan --- p.29 / Chapter Chapter 2 --- Argentophilic Infinite Chain, Column and Layer Structures Assembled with the Multinuclear Silver(I)Phenylethynide Supramolecular Synthon Syntheses of Silver(I)- Ethynide Complexes --- p.32 / Discussion --- p.52 / Conclusion --- p.55 / Chapter Chapter 3 --- Assembly of Multinuclear Supramolecular Synthon X-C₆H₄-C≡C⊃Ag[subscript n] (n = 3, 4; X = F, Cl, Br, I) Incorporating Isomeric Halophenylethynides and Silver Nitrate --- p.57 / Discussion --- p.84 / Summary --- p.86 / Chapter Chapter 4 --- Supramolecular Assembly of Silver(I) Alkyl and Aryl Ethynide with Silver(I) Nitrate in the Formation of Argentophilic Layers --- p.87 / Discussion --- p.121 / Summary --- p.122 / Chapter Chapter 5 --- Assembly of Organometallic Networks with Bifunctional Multinuclear Silver(I)-Ethynide Supramolecular Synthons and Silver Trifluoroacetate --- p.123 / Discussion --- p.149 / Summary --- p.151 / Chapter Chapter 6 --- Network Assembly with Multinuclear Silver(I) Naphthalenyl and Quinolinyl Ethynide Supramolecular Synthons R-C≡C⊃Ag[subscript n] (n = 4, 5) --- p.152 / Discussion --- p.179 / Summary --- p.180 / Chapter Chapter 7 --- Enlargement of Globular Silver Ethynide Cluster via Core Transformation and Re-Assembly --- p.181 / Discussion --- p.187 / Conclusion --- p.189 / Chapter Chapter 8 --- Experimental Section --- p.190 / Chapter 8.1 --- General --- p.190 / Chapter 8.2 --- Preparation of polymeric silver(I) ethynide complexes --- p.190 / Chapter 8.3 --- Preparation of complexes 1-49 --- p.196 / Chapter 8.4 --- X-Ray Crystallographic Analysis --- p.215 / References --- p.216 / Chapter Appendix I --- Publication Based on Research Findings --- p.226 / Chapter Appendix II --- Crystal Data --- p.228 / Chapter Appendix III --- Atomic Coordinates, Thermal Parameters, Bonds Lengths and Bond Angle (Available as an Electronic File) --- p.239
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328055 |
Date | January 2012 |
Contributors | Cheng, Ping Shing., Chinese University of Hong Kong Graduate School. Division of Chemistry. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | electronic resource, electronic resource, remote, 1 online resource (ix, 239 leaves) : ill. (chiefly col.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0022 seconds