Return to search

Molecular cloning of spinach chloroplast DNA isolated by alkaline lysis

Chloroplast genomes of land plants show conservation of structure and gene arrangement. The spinach chloroplast genome is comprised of a covalently closed. circular DNA molecule of 150 kilobases and is typical of these plants. Approximately 20% of the proteins found in the spinach chloroplast are encoded by the chloroplast genome and translated on chloroplast ribosomes. The remainder are encoded on chromosomes in the nucleus, translated on cytoplasmic ribosomes and transported into the chloroplast.
Spinach chloroplast DNA was isolated from crude 2 chloroplast preparations by a new method. Chloroplasts were lysed with alkaline sodium dodecyl sulfate, contaminating macromolecules precipitated with acidified potassium acetate and plastid DNA was purified by phenol:chloroform extraction and ethanol:ammonium acetate precipitation. The yield was approximately 50 ug chloroplast DNA per 100 grams leaf material. The DNA consisted of 10% circular molecules and 90% linear molecules.
The chloroplast DNA was digested with restriction enzyme PstI and the fragments were cloned into the plasmid vector pUC9. Several recombinant plasmids were isolated and the chloroplast DNA inserts identified. The recombinant plasmid pRD105 containing the PstI #5 fragment was subjected to further investigation. The ClaI restriction sites of the PstI #5 fragment were mapped and the insert was subcloned into the plasmid vector pGEM4, which bears bacteriophage SP6 and T7 RNA polymerase promoter sequences.

Identiferoai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-4756
Date01 January 1987
CreatorsDrager, Robert Gray
PublisherPDXScholar
Source SetsPortland State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations and Theses

Page generated in 0.014 seconds