Return to search

Heavy-Core Staffanes : A Computational Study of Their Fundamental Properties of Interest for Molecular Electronics

<p>The basic building blocks in molecular electronics often correspond to conjugated molecules. A compound class consisting of rigid rod-like staffane molecules with the heavier Group 14 elements Si, Ge, Sn and Pb at their bridgehead positions has now been investigated. Herein these oligomers are called heavy-core or Si-, Ge-, Sn- or Pb-core staffanes. These compounds benefit from interaction through their bicyclo[1.1.1]pentane monomer units. Quantum chemical calculations were performed to probe their geometries, stabilities and electronic properties associated with conjugation.</p><p>The stabilities of the bicyclo[<i>n.n.n</i>]alkane and [<i>n.n.n</i>]propellanes (1 ≤ <i>n</i> ≤ 3) with C, Si, Ge and Sn at the bridgehead positions were studied by calculation of homodesmotic ring strain energies. The bicyclic compounds with <i>n</i> = 1 and Si, Ge or Sn at bridgehead positions have lower strain than the all-carbon compound.</p><p>A gradually higher polarizability exaltation is found as the bridgehead element is changed from C to Si, Ge, Sn or Pb. The ratio between longitudinal and average polarizability also increases gradually as Group 14 is descended, consistent with enhanced conjugation in the heavier oligomers.</p><p>The localization of polarons in C-, Si- and Sn-core staffane radical cations was calculated along with internal reorganization energies. The polaron is less localized in Si- and Sn-core than in C-core staffane radical cation. The reorganization energies are also lower for the heavier staffanes, facilitating hole mobility when compared to the C-core staffanes.</p><p>The effect of the bicyclic structure on the low valence excitations in the UV-spectra of compounds with two connected disilyl segments was also investigated. MS-CASPT2 calculations of 1,4-disilyl- and 1,4-bis(trimethylsilyl)-1,4-disilabicyclo[2.2.1]heptanes and 1,4-disilyl- and 1,4-bis(trimethylsilyl)-1,4-disilabicyclo[2.1.1]hexanes revealed that although the bicyclic cage separates the two disilyl chromophores, there is a strong red-shift of the lowest valence excitations when compared to an isolated disilane.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-7492
Date January 2007
CreatorsSandström, Niclas
PublisherUppsala University, Department of Biochemistry and Organic Chemistry, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 271

Page generated in 0.0062 seconds