Everything in the universe is made up of elements from the periodic table. Each element has its own role that it plays in the formation of things it makes up. For instance, pencil lead is graphite. A series of honeycomb-like structures made up of carbon stacked on top of one another. Carbon’s neighbor to the left, boron doesn’t like to form such stacked honeycomb-like structures. But, what if there was a way to make boron act like carbon so it did like to form such structures? That question is the basis of the electronic transmutation concept presented in this dissertation. Electronic transmutation states that an element, such as boron, can behave structurally like carbon (form stacked honeycomb structures) if you make them valence (outer most) isoelectronic (“iso”- same; “electronic”- electrons), so both would have the same number of outer most electrons. As a result, chemists would have a new tool to aid in the rational design of new materials.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8656 |
Date | 01 August 2019 |
Creators | Lundell, Katie A. |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.0019 seconds