Return to search

METABOTROPIC GLUTAMATE RECEPTOR MEDIATED SYNAPTIC PLASTICITY IN THE BED NUCLEUS OF THE STRIA TERMINALIS AS A TARGET FOR STRESS, ANXIETY AND ADDICTION DISORDERS

The importance of integration of information from neurocircuits innervating the reward circuitry is becoming increasingly recognized. For instance, the roles of stress/anxiety pathways in modulating specific effects of the reward system are becoming more apparent. Behavioral data suggest the bed nucleus of the stria terminalis (BNST) is involved in integrating stress information and relaying this information to the stress and reward pathways. Moreover, behavioral data suggest glutamatergic transmission in the BNST as well as other regions in the stress/reward pathways plays an integral role in regulating stress and drug addiction behaviors. Changes in synaptic physiology in the BNST could in part underlie the persistent behavioral alterations in generalized anxiety, addiction and post-traumatic stress disorder. Metabotropic glutamate receptors (mGluRs) have been implicated in stress, addiction and synaptic plasticity, but their roles in the BNST are currently unknown. Field recordings and whole-cell patch clamp analysis in an in vitro slice preparation of C57/Bl6j adult male mouse dorsolateral BNST were utilized. Activation of either group I, group II or group III mGluRs in the dBNST causes a depression of excitatory synaptic transmission. Further characterization of mGluR5-dependent long-term depression (LTD) of excitatory synaptic transmission indicates this LTD is associated with a decrease in miniature EPSC frequency but not a change in paired pulse ratios of evoked responses. This suggests a novel maintenance mechanism for this form of LTD. Potential downstream effectors of group I mGluRs that have also been implicated in stress, addiction and synaptic plasticity are the cannabinoid system and extracellular signal regulated kinase (ERK). mGluR5-mediated LTD in the BNST is G-protein dependent, and persists in the cannabinoid receptor 1 knockout mouse. Further, converging pharmacological and genetic approaches suggest the mGluR5-mediated LTD in the BNST is ERK dependent. Consistent with an emerging role for group I mGluRs in drug addiction, mGluR5-mediated LTD in the BNST is attenuated in mice trained to self-administer cocaine.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-01192006-175826
Date20 January 2006
CreatorsGrueter, Brad Alan
ContributorsRoger Colbran, Jeffrey Conn, Eric Delpire, Aurelio Galli, Gregory Mathews, Danny Winder
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu/available/etd-01192006-175826/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds