Return to search

The Role of Connective Tissue Growth Factor in Islet Morphogenesis and Beta Cell Proliferation

Pancreatic beta cells are the only cell type in the body that can produce insulin, a hormone required for maintaining glucose homeostasis. Type 1 and type 2 diabetes result from an absolute or relative reduction in functional beta cell mass, respectively. One approach to replacing lost beta cell mass is transplantation of islets from cadaveric donors; however, this approach is limited by lack of adequate amounts of donor tissue. Therefore, there has been much interest in identifying factors that enhance beta cell differentiation and proliferation in vivo or in vitro. Connective tissue growth factor (CTGF) is a secreted molecule expressed in pancreatic endothelial cells, beta cells, and ducts during pancreas development. CTGF is required for proper lineage allocation and islet morphogenesis during development and for beta cell proliferation at late gestation. The current study investigated the tissue interactions by which CTGF promotes normal pancreatic islet development. These results show that CTGF produced by both endothelial cells and beta cells is required for embryonic beta cell proliferation, making CTGF the first identified secreted endothelial-derived or beta cell-derived factor which regulates embryonic beta cell proliferation. Removing CTGF from any one source in the pancreas impairs embryonic beta cell proliferation, indicating that beta cell proliferation is particularly sensitive to the level of CTGF. In contrast, inactivating CTGF from one source in the pancreas does not affect lineage allocation or islet morphogenesis, indicating that these sources of CTGF act redundantly to promote these processes. This dissertation also demonstrated that over-expression of CTGF in beta cells during embryogenesis using an inducible transgenic system increases islet mass by promoting endocrine cell proliferation. Together, these findings demonstrate that CTGF acts in both an autocrine and paracrine manner during pancreas development and suggest that CTGF has the potential to enhance beta cell proliferation or differentiation in diabetic models.

Identiferoai:union.ndltd.org:VANDERBILT/oai:VANDERBILTETD:etd-03252011-182248
Date29 March 2011
CreatorsGuney, Michelle Aylin
ContributorsDouglas Mortlock, Anna Means, Richard O'Brien, Roland Stein, Ambra Pozzi
PublisherVANDERBILT
Source SetsVanderbilt University Theses
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.vanderbilt.edu//available/etd-03252011-182248/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Vanderbilt University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0021 seconds