Return to search

Visible-Light-Responsible Co-Catalysts Enhanced by Graphene for Solar Energy Harvesting

This study focuses on the visible light response of hetero-structures of TiO2-graphene- MoS2 for solar energy harvestings. The commercial P25 TiO2 nano-particles, and selfprepared layered reduced graphene oxides (RG) and MoS2 were assembled for the targeted hetero-structure materials as visible-light responsible solar harvesting cocatalysts. The hydrothermal method was applied for nano-material synthesis, the reduction of graphene oxides, and bonding formation. Multiple characterization methods (SEM-TEM, XRD, XPS, UV-VIS, PL, FT-IR, TGA) have been applied to understand the electron-hole pair separation and recombination, and performance tuning in their visible-light photo-catalysis rhodamine B (Rh.B) degradations process
Compared to TiO2, an obvious red shift of light absorption (from 3.1 eV to 2.6 eV) of the as-prepared RG-TiO2 was observed by UV-vis analysis, and an enhanced photocatalytic degradation of the Rhodamine B (Rh.B) using the as-prepared RG-TiO2 was also observed in a Xe lamp exposure test. The explication of these two approaches to photocatalytic improvements were concluded as the energy gap changing, the formation of Ti-O-C chemical bonds between TiO2 and RG for charge transfer and the reduction of the band gap, as well as a likelihood of up-conversion photoluminescence mechanism (UCPL). The synthesis temperature was found to be critical factor to control binding formation and agglomeration of nano-materials. The lower and higher temperatures induced ineffective formations of preferable bonding structures and the significant agglomeration. The optimal synthesis temperature was found to be within 120 ℃-150 ℃ in the TiO2-RG system. For better understanding of the Ti-O-C bonding, a heterostructure of TiO2 nanotube arrays with GO (TNA-GO) was synthesized using the Langmuir-Blodgett (LB) assembly method. The band gap of this assemble was very close to the previous TiO2-RG synthesized below 120 ℃, which is very close to that of TiO2 nano-particles. This lead to the conclusion on the significance of the Ti-O-C bonding in the visible-light-responsible photo-catalysis solar harvestings.
This study revealed the fundamental mechanisms on the bonding formations and the significant visible-light-response of hetero-structcures between commercial-available, inexpensive and non-toxic TiO2 and layered materials, such as the zero-band-gap graphene and the smaller-band-gap MoS2. This mechanisms understanding will greatly sustain applications of economical-effective and environmental-safe TiO2.

Identiferoai:union.ndltd.org:WKU/oai:digitalcommons.wku.edu:theses-2615
Date01 April 2016
CreatorsYing, Chen
PublisherTopSCHOLAR®
Source SetsWestern Kentucky University Theses
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses & Specialist Projects

Page generated in 0.0976 seconds