Return to search

Non-Abelian reduction in deformation quantization

We consider a G-invariant star-product algebra A on a symplectic manifold (M,ω) obtained by a canonical construction of deformation quantization. Under assumptions of the classical Marsden-Weinstein theorem we define a reduction of the algebra A with respect to the G-action. The reduced algebra turns out to be isomorphic to a canonical star-product algebra on the reduced phase space B. In other words, we show that the reduction commutes with the canonical G-invariant
deformation quantization. A similar statement in the framework of geometric quantization is known as the Guillemin-Sternberg conjecture (by now completely proved).

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:2510
Date January 1997
CreatorsFedosov, Boris
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Mathematik
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypePreprint
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.002 seconds