La tomographie optique diffuse de fluorescence permet la reconstruction tridimensionnelle de fluorophores présents dans un tissu biologique. La modalité la plus simple de cette technique repose sur une illumination continue du milieu et s'intéresse aux mesures d'atténuation du faisceau incident en différentes positions. En raison de la forte diffusion des tissus, la modalité continue souffre d'une faible résolution en profondeur.On considère aujourd'hui que la modalité résolue en temps, qui fournit pour chaque photon détecté son temps de vol, permettrait l'étude de tissus plus épais, ouvrant ainsi la porte à des applications cliniques. L'objet de cette thèse est de chercher comment tirer profit de l'information temporelle et de quantifier son apport par rapport à la modalité continue.La tomographie optique diffuse de fluorescence est un problème inverse mal conditionné. Dans un contexte où tout écart au modèle doit être limité, nous nous intéressons tout d'abord au modèle direct et montrons que la densité de photons est un modèle satisfaisant de la quantité expérimentalement mesurée. Nous passons ensuite au crible la méthode de reconstruction fondée sur l'exploitation des moments temporels des mesures. Étudiant théoriquement les propriétés des moments, nous montrons que cette approche nécessite, pour s'avérer intéressante, la détection d'un nombre élevé de photons. Nous introduisons enfin une nouvelle approche permettant d'exploiter l'information temporelle pour un nombre de photons plus limité. Cette approche, reposant sur une transformation en ondelettes des mesures, offre une qualité de reconstruction accrue par rapport à celle offerte par l'approche des moments.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00473766 |
Date | 06 October 2009 |
Creators | Ducros, Nicolas |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0014 seconds