Fluoxetine and escitalopram are the only antidepressants approved by the Food and Drug Administration of the United States of America (FDA) for treatment of major depression in children and adolescents. Both drugs are selective serotonin reuptake inhibitors (SSRIs). In recent years there has been a growing concern over the long-term developmental effects of early-life exposure to SSRIs.
The current study employed male Flinders Sensitive Line (FSL) rats, a well described and validated translational model of depression, to investigate the long term effects of pre-pubertal fluoxetine exposure. First we examined the effect of such early-life exposure on the development of depressive-like behaviour, locomotor activity and anxiety-like behaviour as manifested in early adulthood. Next, the current study investigated the effect of pre-pubertal fluoxetine exposure on the acute monoaminergic stress response, as displayed later in life. Animals received either saline (vehicle control), or 10 mg/kg/day fluoxetine from postnatal day (ND+) 21 to ND+34 (pre-puberty). The treatment period was chosen to coincide with a developmental phase where the serotonergic system’s neurodevelopment had been completed, yet the noradrenergic and dopaminergic systems had not, a scenario comparable to neurodevelopment in human adolescents. Both behavioural and in vivo intra-cerebral microdialysis experiments were conducted after ND+60 (early adulthood).
On ND+60 rats allocated to behavioural experiments were evaluated for depressive-like behaviour in the forced swim test (FST), locomotor activity in the open field test (OFT), and anxiety-like behaviour in the OFT. Corticosterone concentrations were shown to be significantly higher in male FSL rats exposed to a 10 minute forced swim stress when compared to male FSL rats not exposed to a forced swim stress on ND+60. In the microdialysis experiments the rats were exposed to an acute 10 minute forced swim stress and the concentrations of the monoamines and their metabolites were measured before, during, and after the acute stressor.
Relative to saline-treated (control) rats, fluoxetine-treated FSL rats did not show long-term changes in immobility in the FST (i.e. no anti-depressant-like activity) on ND+60. Like-wise anxiety-like behaviour in the OFT did not change. However, a significant decrease in locomotor activity was observed in fluoxetine-treated FSL rats compared to saline-treated (control) rats. These data suggest that a long-lasting anti-depressant-like effect of fluoxetine may be masked by the effect on locomotor activity. With measurements from the microdialysis experiments a significant attenuation of the noradrenergic stress response was observed in fluoxetine-treated rats compared to saline controls. A similar picture was observed for 5-hydroxyindole-3-acetic acid (5-HIAA), a metabolite of serotonin (5-HT), although the latter was not statistically significant. At baseline, before the stressor, significant increase in dopamine (DA) levels were observed in fluoxetine treated rats when compared to saline controls, suggesting that enhanced dopamine neurotransmission may comprise a long-term effect of pre-pubertal fluoxetine treatment. There were no discernible differences in homovanilllic acid (HVA) concentrations between fluoxetine-treated rats and saline controls. In conclusion significant developmental effects of pre-pubertal fluoxetine exposure were observed later in life and these findings warrant further investigation. / MPharm (Pharmacology), North-West University, Potchefstroom Campus, 2015
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nwu/oai:dspace.nwu.ac.za:10394/14118 |
Date | January 2014 |
Creators | Badenhorst, Nico Johan |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0028 seconds