This paper deals with classifying objects using deep neural networks. Whole scene segmentation was used as main algorithm for the classification purpose which works with video sequences and obtains information between two video frames. Optical flow was used for getting information from the video frames, based on which features maps of a~neural network are warped. Two neural network architectures were adjusted to work with videos and experimented with. Results of the experiments show, that using videos for image segmentation improves accuracy (IoU) compared to the same architecture working with images.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:385880 |
Date | January 2018 |
Creators | Mlynarič, Tomáš |
Contributors | Zemčík, Pavel, Hradiš, Michal |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds