Return to search

Problème de centre tangentiel et problème de monodromie pour certains Hamiltoniens non-génériques / Tangential center problem and monodromy problem for some non-generic Hamiltonians

Dans le cas générique Yu. S. Ilyashenko a donné une solution pour le problème tangentielle du centre et le probème de la monodromie. Néanmoins, on ne connaît pas la solution pour tous les cas non-génériques. Dans cette thèse on étudie une famille des équations hamiltoniennes non-génériques dont l'hamiltonien est un produit de polynômes réels irréductibles de dégre supérieur ou égal à 1. On étudie cette famille dans le but d'avoir un modèle d'équation hamiltonienne qui nous permette de comprendre d'autres cas non-génériques. Cette famille ne satisfait pas necessairement les conditions de généricité de transversalité à l'infini et n'a pas nécessairement tous les points singuliers aux niveaux distincts. Nous considerons quelques conditions géomètriques sur les hamiltoniens qu'on appelle bon partage du plan proyective réel et bonne multiplicité à l'infini. Ces conditions nous servent pour calculer l'orbite par monodromie des cycles évanescents. On résout le problème de la monodromie pour deux sous-familles dans cette famille d'hamiltoniennes. Une d'elles satisfait que tous les points critiques de type centre sont à des niveux critiques distincts, et l'autre satisfait que l'hamiltonien est invariant par la réflexion par rapport à l'axe des y. En utilisant la solution du problème de la monodromie on résout aussi le problème tangentiel du centre pour ces familles. / In the generic case Yu. S. Ilyashenko gave a solution of the tangential center problem and the monodromy problem. However, a solution for all non-generic cases is not known. In this thesis we study a family of non-generic Hamiltonians, whose Hamiltonian is a product of real polynomials of degree equal or bigger than 1. We study this family with the idea that a good understanding of this Hamiltonian model could help us to understand other non-generic cases later. In this family the genericity assumption of transversality at infinity fails and the coincidence of the critical values for different critical points is allowed. We consider some geometric conditions on the Hamiltonians of this family that we call good divide of the real projective plane and good multiplicity at infinity. These conditions help us to compute the orbit under monodromy of vanishing cycles. We give a solution of the monodromy problem of two sub-families in this family. One of them satisfying that all the center critical points are at different critical levels, and the other satisfying that the Hamiltonian is invariant under the reflection with respect to the y-axis. Using the solution of the monodromy problem we also provide a solution of the tangential center problem for those families.

Identiferoai:union.ndltd.org:theses.fr/2016DIJOS001
Date05 February 2016
CreatorsPontigo Herrera, Jessie Diana
ContributorsDijon, Universidad nacional autónoma (Mexico), Mardesic, Pavao, Ortíz-Bobadilla, Laura
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, Spanish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds