Newsvendor Models with Monte Carlo Sampling by Ijeoma Winifred Ekwegh The newsvendor model is used in solving inventory problems in which demand is random. In this thesis, we will focus on a method of using Monte Carlo sampling to estimate the order quantity that will either maximizes revenue or minimizes cost given that demand is uncertain. Given data, the Monte Carlo approach will be used in sampling data over scenarios and also estimating the probability density function. A bootstrapping process yields an empirical distribution for the order quantity that will maximize the expected profit. Finally, this method will be used on a newsvendor example to show that it works in maximizing profit.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-4522 |
Date | 01 August 2016 |
Creators | Ekwegh, Ijeoma W |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the Ijeoma Winifred Ekwegh |
Page generated in 0.0026 seconds