Return to search

Umělá inteligence pro počítačovou hru Children of the Galaxy / Artificial Intelligence for Children of the Galaxy Computer Game

Even though artificial intelligence (AI) agents are now able to solve many classical games, in the field of computer strategy games, the AI opponents still leave much to be desired. In this work we tackle a problem of combat in strategy video games by adapting existing search approaches: Portfolio greedy search (PGS) and Monte-Carlo tree search (MCTS). We also introduce an improved version of MCTS called MCTS considering hit points (MCTS_HP). These methods are evaluated in context of a recently released 4X strategy game Children of the Galaxy. We implement a combat simulator for the game and a benchmarking framework where various AI approaches can be compared. We show that for small to medium combat MCTS methods are superior to PGS. In all scenarios MCTS_HP is equal or better than regular MCTS due to its better search guidance. In smaller scenarios MCTS_HP with only 100 millisecond time limit outperforms regular MCTS with 2 second time limit. By combining fast greedy search for large combats and more precise MCTS_HP for smaller scenarios a universal AI player can be created.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:387346
Date January 2018
CreatorsŠmejkal, Pavel
ContributorsGemrot, Jakub, Trunda, Otakar
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0016 seconds