The main advantage of stochastic forecasting is fan of possible value, which deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. We can categorize discharge in measurement profile as random process. Stochastic management is worked with dispersion of controlling discharge value. In thesis is described construction and evaluation of adaptive stochastic model base on fuzzy logic, neural networks and evolution algorithm, which are used stochastic forecast from forecasting models described in thesis. The learning fuzzy model and neural network is used as replacement of classic optimization algorithm (evolution algorithm). Model was tested and validated on made up large open water reservoir. Results were evaluated and were compared with model base on traditional algorithms, which was used for 100% forecast (forecasted values are real values). The management of the large open water reservoir with storage function, which was given by stochastic adaptive managing, was logical. The main advantage of fuzzy model and neural network model is computing speed. Classical optimization model is needed much more time for same calculation as fuzzy and neural network model, therefore classic model used clusters for stochastic calculation.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:390282 |
Creators | Kozel, Tomáš |
Contributors | Fošumpaur, Pavel, Zezulák,, Jiří, Starý, Miloš |
Publisher | Vysoké učení technické v Brně. Fakulta stavební |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds