Return to search

Aplicações de mecânica estatística à psicologia moral / Applications of Statistical Mechanics to Moral Psychology

Procuramos neste trabalho investigar um modelo de uma sociedade em que agentes aprendem de seu vizinhos sociais. Buscando inspiração no paradigma de redes neurais, construímos uma analogia entre o modelo e o julgamento moral. Usando dados de questionários on-line obtidos alhures, apresentamos uma análise estatística de dados de sujeitos humanos. A partir destes dados estudamos o modelo, encontrando uma transição de fase entre um estado ordenado e um desordenado, dependente de um parâmetro análogo ao inverso da temperatura beta que denominamos peer pressure e de um parâmetro de controle delta associado ao comportamento dos agentes. Ao compararmos histogramas obtidos do modelo com histogramas dos dados de questionários observamos uma semelhança surpreendente entre os dois. Para determinar o diagrama de fases do modelo, usamos métodos de Monte Carlo e uma aproximação de campo médio usando métodos de máxima entropia. Estudamos também a suscetibilidade do sistema a perturbações no ambiente de discussão e encontramos um decaimento exponencial da distância entre o estado perturbado e o de equilíbrio, com um mínimo no tempo característico de adaptação para um certo valor de delta. / In this work we seek to investigate a model of a society in which agents learn from their social neighbours. Seeking inspiration in the neural network paradigm, we build an analogy between the model and moral judgement. Using data from online questionaries obtained elsewhere, we present a statistical analysis of human data. Starting from these we study the model, finding a phase transition between an ordered and a disordered state, dependent on a parameter akin to the inverse temperature beta that we denominate peer pressure and a control parameter delta associated to the agents\' behavior. Comparing the histograms obtained with the model and histograms obtained from the data we observed a surprising simlarity between the two. To determine the phase diagram of the model we use Monte Carlo methods and a mean-field approximation using maximum entropy methods. We also study the susceptibility of the system to perturbations in the environment and find an exponential decay in the distance between the perturbated and equilibrium states, with a minimum of the characteristic time of adaptation for a given value of delta.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-18102010-092744
Date13 September 2010
CreatorsAlex Kunze Susemihl
ContributorsNestor Felipe Caticha Alfonso, Jose Fernando Fontanari, Vera Bohomoletz Henriques
PublisherUniversidade de São Paulo, Física, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0117 seconds