Submitted by Neusa Fagundes (neusa.fagundes@unioeste.br) on 2018-02-09T12:29:51Z
No. of bitstreams: 2
Dyogo_Ribeiro2017.pdf: 1294201 bytes, checksum: 2406c2ef527fc306e8c428a6483553cb (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-02-09T12:29:51Z (GMT). No. of bitstreams: 2
Dyogo_Ribeiro2017.pdf: 1294201 bytes, checksum: 2406c2ef527fc306e8c428a6483553cb (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-09-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Geostatistical techniques have contributed on acquainting the studied area characteristics. They have made the decisions easier to be taken regarding the management of the agricultural yield system and contributed to sustainable development in precision agriculture. Anisotropy is a characteristic that has influenced the precision of thematic maps that represent spatial variability of the studied phenomenon. Thus, this trial aimed at using Moran directional index in anisotropy analysis in georeferenced variables. Moran directional index was calculated considering isotropic and anisotropic geostatistical models to highlight the directional difference in thematic maps when anisotropy is incorporated or not in the geostatistical model. Thus, simulated data were used considering an irregular sample configuration, with 100 points. Data were simulated with an anisotropic (geometric) spatial dependence structure following an exponential model, with an angle of greater spatial continuity equal to 90 ° (azimuth) and varying the anisotropy factor. Moran directional index was calculated for sampled values of simulated data, as a tool to assist in decision making regarding the existence of anisotropy. Then, this process was also used for soil chemical attributes, observed in an agricultural area with soybean cropping, referring to the agricultural year of 2014/2015. The directional spatial autocorrelation was effective in identifying geometric anisotropy for simulated data and soil chemical attributes. It also highlighted the directional difference among the thematic maps, when the existence of anisotropy is considered or not in the geostatistical model. / As técnicas de geoestatística contribuem para o entendimento das características da área em estudo, facilitam as tomadas de decisões em relação ao gerenciamento do sistema de produção agrícola e contribuem para o desenvolvimento sustentável em agricultura de precisão. A anisotropia é uma característica que influencia na precisão dos mapas temáticos que representam a variabilidade espacial do fenômeno estudado. Assim, esse trabalho tem por escopo utilizar o índice de Moran direcional na análise de anisotropia em variáveis georreferenciadas. O índice de Moran direcional foi calculado considerando modelos geoestatístico isotrópicos e anisotrópicos, com o intuito de evidenciar a diferença direcional que existe nos mapas temáticos quando se incorpora ou não a anisotropia no modelo geoestatístico. Para isso, foram utilizados dados simulados a partir de uma configuração amostral irregular, com cem pontos. Os dados foram simulados com uma estrutura de dependência espacial anisotrópica (geométrica) de acordo com um modelo exponencial, com ângulo de maior continuidade espacial igual a 90° (azimute) e variação do fator de anisotropia. O índice de Moran direcional foi calculado para os valores amostrais dos dados simulados, como ferramenta de auxílio na tomada de decisão quanto à existência de anisotropia. Posteriormente, esse processo também foi utilizado para os atributos químicos do solo observados em uma área agrícola com plantação de soja, referente ao ano agrícola de 2014/2015. A autocorrelação espacial direcional se apresentou eficaz para os dados simulados e os atributos químicos do solo, quanto à identificação da anisotropia geométrica e também para evidenciar a diferença direcional que existe nos mapas temáticos, quando se considera (ou não) a existência de anisotropia no modelo geoestatístico.
Identifer | oai:union.ndltd.org:IBICT/oai:tede.unioeste.br:tede/3293 |
Date | 15 September 2017 |
Creators | Ribeiro, Dyogo Lesniewski |
Contributors | Guedes , Luciana Pagliosa Carvalho, Dalposso, Gustavo Henrique, Opazo, Miguel Angel Uribe |
Publisher | Universidade Estadual do Oeste do Paraná, Cascavel, 6588633818200016417, 500, Programa de Pós-Graduação em Engenharia Agrícola, UNIOESTE, Brasil, Centro de Ciências Exatas e Tecnológicas |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE, instname:Universidade Estadual do Oeste do Paraná, instacron:UNIOESTE |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | -5347692450416052129, 600, 600, 600, 600, 2214374442868382015, 9185445721588761555, 2075167498588264571 |
Page generated in 0.004 seconds