Return to search

Structural Design and Analysis of a Kinematic Mechanism for a Morphing Hyper-Elliptic Cambered Span (HECS) Wing

The HECS wing was developed by NASA Langley Research Center and has a nonplanar, hyper-elliptically swept leading and trailing edge as well as spanwise camber. For this wing, the leading and trailing edges are swept back according to a hyper-elliptical equation. The span of the wing is also defined with hyper-elliptical anhedral giving it nonplanar spanwise camber. A single-degree-of-freedom mechanism is developed to provide a means for the wing to continuously change shape from its nonplanar to planar configuration. The mechanism uses a repeating quaternary-binary link configuration to translate motion from one segment to the next. A synthesis of the mechanism is performed, such that with one input to the first segment of the chain, the other wing segments move into their desired positions. Linear aerodynamic theory is applied to the HECS wing configuration at certain morphed positions in order to predict the aerodynamic loads.

This work performs a linear static analysis of the mechanism at different morphed positions. A finite element representation of the mechanism as a structure is developed. Using the predicted aerodynamic loads, a structural analysis is performed. The analysis investigates different materials and cross sections of the members to determine a need for redesign due to failure from buckling and bending stress. From the analysis of the mechanism, a design is finalized which lightens the structure as well as increases the strength. These results are beneficial for the next phase of model development of the mechanism. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/9668
Date13 January 2004
CreatorsWiggins, Leonard D. III
ContributorsMechanical Engineering, Robertshaw, Harry H., Inman, Daniel J., West, Robert L. Jr., Reinholtz, Charles F.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationLDW_Thesis_2003.pdf

Page generated in 0.0025 seconds