During cell communication, cells produce secreted signals termed morphogens, which traffic through the tissue until they are received by target, responding cells. Using the fruit fly Drosophila melanogaster as a model organism, I have studied transforming growth factor-beta (TGF-beta) signal from the secreting to the receiving cells in the developing wing epithelial cells and at the neuromuscular junctions. Cell culture studies have suggested that cells modulate morphogenetic signaling by expressing the receptors and secreting the ligand in spatially defined areas of the cell. Indeed, I have found that TGF-beta ligands, receptors and R-Smads show a polarized distribution both in the epithelial cells and at the synapses. My results indicate that the cellular junctions define a signaling domain within the plasma membrane, to which TGF-beta signaling machinery is targeted. In the context of epithelial cells, the junctions play a role in TGF-beta signaling regulation through their component beta-cat. A complex forms between beta-cat and the R-Smad Mad, but the mechanism by which beta-cat modulates signaling is not yet understood. At the synapse, the sub-cellular localization of TGF-beta pathway components indicates the occurrence of an anterograde signal. Moreover, my results suggest a scenario in which TGF-beta signaling is coupled with synaptic activity: quanta of growth factor, released upon neurostimulation together with neurotransmitter quanta, could modulate therefore the development and the function of the synapse.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:24509 |
Date | 08 June 2005 |
Creators | Dudu, Veronica |
Contributors | Gonzalez-Gaitan, Marcos, Barth, Gerold, Klämbt, Christian |
Publisher | Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds