Morphological image processing is especially useful in the applications of medical image processing, pattern recognition, and industry auto-inspection. Special hardware for morphological image processing are very expensive. On the other hand, the speed of software are too slow. The purpose of this paper is to speed up the software computations of morphological image processing by parallel processing on Pentium machine.
The morphological operation is similar to digital convolution. We can realize our parallel morphological operation on the Pentium machine by two different methods. They are output-decomposition and input-decomposition methods, similar to the procedure of overlap-and-save and overlap-and-add respectively. The above methods implemented on Pentium machine are proved very efficient with 64-bits parallelism. Our experimental results demonstrated they are twice faster than the 32-bits parallelism method. In addition to the simulation and the real time experiments, a set of theoretical formulas are derived to analyze our methods and are checking the actual measured time quite well.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0806101-035454 |
Date | 06 August 2001 |
Creators | Chen, Jau-Liang |
Contributors | Ben-shung Chow, Chang-Biau Yang, Tsung Lee |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0806101-035454 |
Rights | restricted, Copyright information available at source archive |
Page generated in 0.0021 seconds