Return to search

Roles of morphology and foreign metals of ceria-based catalysts in improving oxidations of Diesel vehicle pollutants / rôles de la morphologie et du dopage des catalyseurs à base de cérine dans l'oxydation des polluants émis par les véhicules diesel

Le travail au présent surligne la cérine nanostructurée et bien-définie ; une morphologie qui promeut une haute activité catalytique de la cérine dans l’oxydation des suies. Le travail présente également l’introduction des métaux pour le dopage, tels que praséodyme et zirconium, à la surface de la cérine pour améliorer la réductibilité, la stabilité thermique, et la capacité du stockage d’oxygène. L’oxydation à température programmée a été utilisée pour analyser l’activité catalytique. Au premier étage de la recherche, on a découvert que l’oxyde en mélange équimolaire de la cérine et de l’oxyde de praséodyme en nanostructure (indiqué comme Ce50Pr50-NP) possède la quantité d’espèces oxygénées à la surface la plus haute, la réductibilité la plus haute et l’activité catalytique la plus haute dans l’oxydation normale des suies. Il a été conclu que la nanostructure soulève la fonctionnalité du praséodyme dans la cérine. Le travail introduit également des nanoparticules (NPs) de Pt stabilisée par n-octylsilane. Pendant la calcination, les ligands silyliques se transforment aux « patches » de la silice qui leur évitent le frittage. Des NPs de Cu ont été préparées avec la même façon ; néanmoins elles ont souffert de sintering. Les NPs de Pt sont très actives dans l’oxydation de tous les polluants modèles des véhicules Diesel, spécifiquement l’oxydation des suies en présence de NOx, et elles fonctionnent mieux avec la cérine nanostructurée. Comme attendu, Ce50Pr50-NP donne l’activité catalytique plus haute que les catalyseurs à base du platine. La haute conversion du NO et l’adsorption du NO2 sur la surface sont la raison majeure de l’activité marquante / The present work highlights well-defined nanostructured ceria; a morphology that bestows exceptional catalytic activity on ceria towards soot oxidation. The work includes also introduction of promoting foreign metals, such as praseodymium and zirconium, to well-defined nanostructured ceria as a means of improving reducibility, thermal stability and oxygen storage capacity of the catalyst. Temperature-programmed oxidation (TPO) has been used for analyzing catalytic activity. At the first stage of the research, nanostructured equimolar ceria-praseodymia (denoted as Ce50Pr50-NP) was found to have the highest amount of surface oxygen, the highest reducibility and the highest catalytic activity towards soot oxidation. The nanostructured morphology has been proven to raise the functionality of praseodymia as the foreign metal in ceria. The work also introduces small, silane-stabilized Pt nanoparticles. Upon calcination, silyl ligands are transformed into siliceous patches that prevent the particle from migrating/coalescing. Cu nanoparticles have been prepared the same way as Pt nanoparticles; however, they sinter even under milder thermal treatment. The small Pt-NPs are proven active towards all pollutant oxidations, including NOx-assisted soot oxidation, and they function better with nanostructured ceria as the support. Unexpectedly, Ce50Pr50-NP gives higher activity towards NOx-assisted soot oxidation than Pt catalysts. Intense NO conversion and NO2 adsorption on the surface of Ce50Pr50-NP are the reason behind its high activity

Identiferoai:union.ndltd.org:theses.fr/2017LYSE1066
Date04 April 2017
CreatorsAndana, Tahrizi
ContributorsLyon, Politecnico di Torino, Quadrelli, Elsje Alessandra, Bensaid, Samir, Pirone, Raffaele
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds