Return to search

Automatic Tissue Segmentation of Volumetric CT Data of the Pelvic Region

Automatic segmentation of human organs allows more accurate calculation of organ doses in radiationtreatment planning, as it adds prior information about the material composition of imaged tissues. For instance, the separation of tissues into bone, adipose tissue and remaining soft tissues allows to use tabulated material compositions of those tissues. This approximation is not perfect because of variability of tissue composition among patients, but is still better than no approximation at all. Another use for automated tissue segmentationis in model based iterative reconstruction algorithms. An example of such an algorithm is DIRA, which is developed at the Medical Radiation Physics and the Center for Medical Imaging Science and Visualization(CMIV) at Linköpings University. DIRA uses dual-energy computed tomography (DECT) data to decompose patient tissues into two or three base components. So far DIRA has used the MK2014 algorithm which segments human pelvis into bones, adipose tissue, gluteus maximus muscles and the prostate. One problem was that MK2014 was limited to 2D and it was not very robust. Aim: The aim of this thesis work was to extend the MK2014 to 3D as well as to improve it. The task was structured to the following activities: selection of suitable segmentation algorithms, evaluation of their results and combining of those to an automated segmentation algorithm. Of special interest was image registration usingthe Morphon. Methods: Several different algorithms were tested.  For instance: Otsu's method followed by threshold segmentation; histogram matching followed by threshold segmentation, region growing and hole-filling; affine phase-based registration and the Morphon. The best-performing algorithms were combined into the newly developed JJ2016. Results: For the segmentation of adipose tissue and the bones in the eight investigated data sets, the JJ2016 algorithm gave better results than the MK2014. The better results of the JJ2016 were achieved by: (i) a new segmentation algorithm for adipose tissue which was not affected by the amount of air surrounding the patient and segmented smaller regions of adipose tissue and (ii) a new filling algorithm for connecting segments of compact bone. The JJ2016 algorithm also estimates a likely position for the prostate and the rectum by combining linear and non-linear phase-based registration for atlas based segmentation. The estimated position (center point) was in most cases close to the true position of the organs. Several deficiencies of the MK2014 algorithm were removed but the improved version (MK2014v2) did not perform as well as the JJ2016. Conclusions: JJ2016 performed well for all data sets. The JJ2016 algorithm is usable for the intended application, but is (without further improvements) too slow for interactive usage. Additionally, a validation of the algorithm for clinical use should be performed on a larger number of data sets, covering the variability of patients in shape and size.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-133153
Date January 2017
CreatorsJeuthe, Julius
PublisherLinköpings universitet, Medicinsk informatik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds