Return to search

AVALIAÇÃO DE MÉTODOS DE MOSAICO DE IMAGENS APLICADOS EM IMAGENS AGRÍCOLAS OBTIDAS POR MEIO DE RPA

Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2018-06-19T17:15:59Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
PEDRO HENRIQUE SOARES DE ALMEIDA.pdf: 8669671 bytes, checksum: bf6252d5566d0b626215c08edce94dca (MD5) / Made available in DSpace on 2018-06-19T17:15:59Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
PEDRO HENRIQUE SOARES DE ALMEIDA.pdf: 8669671 bytes, checksum: bf6252d5566d0b626215c08edce94dca (MD5)
Previous issue date: 2018-05-15 / O mosaico de imagens é o alinhamento de múltiplas imagens em composições maiores
que representam partes de uma cena 3D. Diversos algoritmos de mosaico de imagens
foram propostos nas últimas duas décadas. Ao mesmo tempo, o advento contínuo de
novos métodos de mosaico torna muito difícil escolher um algoritmo apropriado para uma
finalidade específica. Este trabalho teve por objetivo avaliar métodos de mosaico baseados
em característica de baixo nível utilizando imagens agrícolas obtidas por meio de Aeronave
Remotamente Pilotada (RPA). Algoritmos detectores de característica de baixo nível
podem ser invariantes à escala e rotação, dentre outras transformações que comumente
ocorrem em imagens agrícolas obtidas por meio de RPA. O detector de cantos de Harris,
detector de cantos FAST, detector de característica SIFT e detector SURF foram avaliados
de acordo com o desempenho computacional e a qualidade do mosaico gerado. Para avaliar
o desempenho, foram levados em consideração fatores como a média de características
detectadas por imagem, o número de imagens utilizadas para compor o mosaico e o tempo
de processamento (tempo de usuário ou user time). Para avaliar a qualidade, os mosaicos
gerados pelos métodos foram utilizados para estimar a severidade da ferrugem asiática da
soja e uma comparação com o software comercial Pix4Dmapper foi realizada. Em relação
à qualidade, não houve diferença significativa e todos os métodos demonstraram estar no
mesmo patamar. O detector SURF, dentre todos os métodos, obteve o pior desempenho
utilizando, em média, apenas 33,1% das imagens de entrada para compor os mosaicos.
O detector de cantos de Harris mostrou-se como a solução mais rápida, chegando a ser
7,27% mais rápido para compor o mosaico. Porém, em seu último mosaico gerado, o
aproveitamento das imagens de entrada foi pobre: apenas 52%. O detector de cantos
FAST obteve o melhor aproveitamento das imagens de entrada, porém, descontinuidades
significativas de objetos ocorreram em seu último mosaico gerado. Além disso, obteve um
tempo de processamento consideravelmente superior ao dos demais métodos, chegando
a ser 6,42 vezes mais lento para compor o mosaico. O detector de característica SIFT
obteve o segundo melhor tempo de processamento e o segundo melhor aproveitamento das
imagens de entrada, sem apresentar problemas de descontinuidades de objetos. Portanto,
mostrou-se como o método mais adequado para imagens agrícolas obtidas por meio de RPA. / Image mosaicing is the alignment of multiple images into larger compositions which represent
portions of a 3D scene. A number of image mosaicing algorithms have been proposed
over the last two decades. At the same time, the continuous advent of new mosaicing
methods in recent years makes it really difficult to choose an appropriate mosaicing
algorithm for a specific purpose. This study aimed to evaluate low level feature-based
mosaicing methods using agricultural images obtained by Remotely Piloted Aircraft (RPA).
Low-level feature detecting algorithms can be invariant to scale and rotation, among other
transformations that commonly occur in agricultural images obtained by RPA. Harris
corner detector, FAST corner detector, SIFT feature detector and SURF detector were
evaluated according to the computational performance and the quality of the generated
mosaic. To evaluate computational performance, were taken into account factors such
as the detected features average per image, the number of images used to compose the
mosaic and the processing time (user time). To evaluate quality, the mosaics generated
by each method were used to estimate the Asian soybean rust severity and a comparison
with the commercial software Pix4Dmapper was performed. Regarding quality, there was
no significant difference and all methods proved to be on the same level. SURF detector,
among all methods, got the worst performance using, on average, only 33.1% of the input
images to compose the mosaics. Harris corner detector proved to be the fastest solution,
becoming 7.27% faster to compose the mosaic. However, in its final mosaic, the use of the
input images was poor: only 52%. FAST corner detector had the best utilization of the
input images, however, significant discontinuities of objects occurred in its final mosaic. In
addition, it had a considerably longer processing time than the other methods, becoming
6.42 times slower to compose the mosaic. SIFT feature detector had the second best
processing time and the second best utilization of the input images, without presenting
object discontinuities problems. Therefore, presented itself as the most suitable method
for agricultural images obtained by RPA.

Identiferoai:union.ndltd.org:IBICT/oai:tede2.uepg.br:prefix/2543
Date15 May 2018
CreatorsAlmeida, Pedro Henrique Soares de
ContributorsSenger, Luciano José, Guimarães, Alaine Margarete, Morais, Erikson Freitas de
PublisherUniversidade Estadual de Ponta Grossa, Programa de Pós Graduação Computação Aplicada, UEPG, Brasil, Departamento de Informática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UEPG, instname:Universidade Estadual de Ponta Grossa, instacron:UEPG
RightsAttribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds