<p>The interest in video surveillance has increased in recent years. Cameras are now installed in e.g. stores, arenas and prisons. The video data is analyzed to detect abnormal or undesirable events such as thefts, fights and escapes. At the Informatics Unit at the division of Information Systems, FOI in Linköping, algorithms are developed for automatic detection and tracking of humans in video data. This thesis deals with the target tracking problem when a 3D camera is used. A 3D camera creates images whose pixels represent the ranges to the scene. In recent years, new camera systems have emerged where the range images are delivered at up to video rate (30 Hz). One goal of the thesis is to determine how range data affects the frequency with which the measurement update part of the tracking algorithm must be performed. Performance of the 2D tracker and the 3D tracker are evaluated with both simulated data and measured data from a 3D camera. It is concluded that the errors in the estimated image coordinates are independent of whether range data is available or not. The small angle and the relatively large distance to the target explains the good performance of the 2D tracker. The 3D tracker however shows superior tracking ability (much smaller tracking error) if the comparison is made in the world coordinates.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-54426 |
Date | January 2010 |
Creators | Karlsson, Daniel |
Publisher | Linköping University, Department of Electrical Engineering |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.002 seconds