Return to search

EXTRA-PERSONAL GAZE INFLUENCES ON THE EYE TO HAND SPATIAL INTERFERENCE EFFECT

An examination into the influence of observed gaze cues on motor output. / Richardson and colleagues (2013) demonstrated oculo-manual spatial interference by finding that the finger trajectory in a vertical tapping task deviated toward the direction of a concurrent saccade. It was proposed that the entrainment of the hand to the eyes was in part a function of generalized motor planning. Human action observation research has shown that cortical motor planning is also active during action observation (e.g. Buccino et al. 2001; Decety et al. 1997), which can lead to other forms of spatial interference (Kilner et al 2003). We hypothesized that because motor planning subserves both observation and execution of action, simply observing the horizontal saccades of another person would cause sufficient recruitment of oculomotor planning structures, that would result in finger tap trajectory deviations toward the direction of the observed saccade (but would not do so in a non-biological observation control condition).19 participants performed 24 trials of vertical finger taps under three different visual conditions. They were required to: a) saccade horizontally between targets; b) fixate on a biological stimulus (i.e. a video of horizontally saccading human eyes); or c) fixate on a non-biological control stimulus (horizontally moving black dots) while tapping their finger to an auditory metronome beat presented at a 750ms intervals. Results from the saccading condition replicate Richardson et al’s (2013) entrainment effect. That is, finger taps deviated to the left when participants saccaded left, and to the right when executed with a rightward saccade. Contrary to expectations however, there was no entrainment induced by observing either the biological stimulus or the control stimulus. This suggests that competing motor plans (eyes and hands) are necessary to induce interference. Further, simply observing eye movements do not recruit the same oculomotor planning networks as action execution. / Thesis / Master of Science in Kinesiology

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/18373
Date11 1900
CreatorsMarshall, Rachèle
ContributorsLyons, James, Kinesiology
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0017 seconds