In this work growth of cubic GaN in the selective area (SA) MOVPE process is simulated. The simulations are restricted to small pattern SA MOVPE growth. In this case the traditional MOVPE growth and the enhanced growth caused by surface diffusion are important growth factors. The lateral vapor phase diffusion is ignored while this process only has a small impact on the enhanced growth in the small pattern SA growth. The model is build for simulation of anisotropic growth. It has been shown that different type of anisotropic growth occurs when the mask pattern are orientated in different directions on the substrate. While the anisotropic growth is not well understood two different models are studied in this work. The simulation is restricted to the geometrical growth characteristics such as mask and crystal width, mask alignment and surface diffusion on the crystal. The reactor geometry, pressure and growth temperature are not investigated that closely and are only treated as constants in the model. The model used in this simulation gives good results for short time simulations for some certain cases. The model shows that the fill factor has a greater impact on the grown shapes than the individual mask and crystal width. But there are problems with the anisotropic and flux from mask modeling while some facets do not appear and the lateral growth along the mask show doubtful results. The model show good results in short time growth and predict some important characteristics in SA MOVPE.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-17682 |
Date | January 2009 |
Creators | Nilsson, Daniel |
Publisher | Linköpings universitet, Institutionen för fysik, kemi och biologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds