Return to search

Decentralized graph processes for robust multi-agent networks

The objective of this thesis is to develop decentralized methods for building robust multi-agent networks through self-organization. Multi-agent networks appear in a large number of natural and engineered systems, including but not limited to, biological networks, social networks, communication systems, transportation systems, power grids, and robotic swarms. Networked systems typically consist of numerous components that interact with each other to achieve some collaborative tasks such as flocking, coverage optimization, load balancing, or distributed estimation, to name a few. Multi-agent networks are often modeled via interaction graphs, where the nodes represent the agents and the edges denote direct interactions between the corresponding agents. Interaction graphs play a significant role in the overall behavior and performance of multi-agent networks. There- fore, graph theoretic analysis of networked systems has received a considerable amount of attention within the last decade.
In many applications, network components are likely to face various functional or structural disturbances including, but not limited to, component failures, noise, or malicious attacks. Hence, a desirable network property is robustness, which is the ability to perform reasonably well even when the network is subjected to such perturbations.
In this thesis, robustness in multi-agent networks is pursued in two parts. The first part presents a decentralized graph reconfiguration scheme for formation of robust interaction graphs. Particularly, the proposed scheme transforms any interaction graph into a random regular graph, which is robust to the perturbations of their nodes/links. The second part presents a decentralized coverage control scheme for optimal protection of networks by some mobile security resources. As such, the proposed scheme drives a group of arbitrarily deployed resources to optimal locations on a network in a decentralized fashion.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53017
Date12 January 2015
CreatorsYazicioglu, Ahmet Yasin
ContributorsZhang, Fumin
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0019 seconds