Dans ce travail nous avons développé des modèles de Monte Carlo cinétique d’objets (OKMC) qui ont permis de prédire l'évolution nano-structurelle des amas de lacunes et des auto-interstitiels sous irradiation neutronique, à la température de fonctionnement des réacteurs de génération II dans les alliages Fe-C-MnNi (alliages modèles pour les aciers de cuve) et Fe-Cr-C (matériaux envisagés pour les réacteurs de génération IV). Un véritable acier de cuve venant du programme de surveillance de la centrale nucléaire suédoise de Ringhals a aussi été modélisé. Pour ce faire nous avons développé deux modèles OKMC fondés sur les données les plus actuelles concernant la mobilité et la stabilité des amas de défauts. Les effets des solutés d'intérêt ont été introduits dans nos modèles dans l’hypothèse simplifiée ‘‘d’alliage gris’’, c'est-à-dire que les solutés ne sont pas explicitement introduits dans le modèle, qui ne peut donc pas décrire leur redistribution, mais leur effet est introduit dans les paramètres liés à la mobilité des amas de défauts. A l’aide de cette approche nous avons modélisé diverses conditions de température et de débit de dose ainsi que des études de recuits isochrones d’alliages Fe-C-MnNi. L'origine du durcissement par irradiation neutronique à basse température a également été étudiée et les modèles ont fortement soutenu l'hypothèse selon laquelle les solutés ségrégent sur des boucles interstitielles immobiles, qui agissent donc comme des sites de nucléation hétérogène pour la formation d’amas enrichis en NiSiPCr et MnNi. A chaque fois nos modèles ont été validés par comparaison des résultats obtenus avec les observations expérimentales disponibles dans la littérature. / We developed object kinetic Monte Carlo (OKMC) models that proved able to predict the nanostructure evolution under neutron irradiation in both RPV and F/M steels. These were modelled, respectively, in terms of Fe-C-MnNi and Fe-C-Cr alloys, but the model was also validated against data obtained on a real RPV steel coming from the surveillance programme of the Ringhals Swedish nuclear power plant. The effects of the substitutional solutes of interest were introduced in our OKMC model under the simplifying assumptions of ‘‘grey alloy’’ scheme, i.e. they were not explicitly introduced in the model, which therefore cannot describe their redistribution under irradiation, but their effect was translated into modified parameters for the mobility of defect clusters. The possible origin of low temperature radiation hardening (and subsequent embrittlement) was also investigated and the models strongly supported the hypothesis that solute clusters segregate on immobile interstitial loops, which act therefore as heterogeneous nucleation sites for the formation of the NiSiPCr- and MnNi-enriched cluster populations experimentally, as observed with atom probe tomography in, respectively, F/M and RPV steels. In other words, the so-called matrix damage would be intimately associated with solute atom clusters and precipitates which increase their stability and reduce their mobility: their ultimate effect is reflected in an alteration of the macroscopic mechanical properties of the investigated alloys. Throughout all our work the obtained results have been systematically validated on existing experimental data, in a process of continuous improvement of the physical hypotheses adopted.
Identifer | oai:union.ndltd.org:theses.fr/2017LIL10070 |
Date | 27 September 2017 |
Creators | Chiapetto, Monica |
Contributors | Lille 1, Becquart, Charlotte, Malerba, Lorenzo |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds