Return to search

Kinematic Analysis, Numerical Modeling, and Design Optimization of Helical External Gear Pumps

<p>With their advantages of low-cost, high-reliability and simplicity, external gear pumps (EGPs) are popular choices in many applications, such as mobile hydraulic control system, fuel injection, and liquid transportation system, to name a few. Like other positive displacement machines, EGPs are characterized by a flow non-uniformity, which is given by the gear meshing and results in vibrations and noises. With increasing demands for low-noise components required by modern fluid-power systems, new designs of external gear machines with less noise emission and lower pulsation production are highly desired by the industry. </p><p><br></p><p>To satisfy these demands, there are several new-generation gear pump designs that have been realized by the industry and already commercialized. However, the research from both academia on external gear pumps are still primarily focused traditional involute gear pumps, while state-of-the-art research on these new-generation external gear pumps are highly lacked. Also for the most novel designs recently released to the market, their designs still have large margin to improve, as some of the physics inside these gear machines are not well understood and formulated. The goal of this research is to fill in this gap, by gain understanding of the relations between design features and actual flow generated by such novel designs, and provide general methods of analysis and design for efficient and silent units. </p><p><br></p><p>To achieve this goal, this PhD dissertation presents a comprehensive approach of analysis for external gear pumps, with the emphasis on the new-generation helical gear pumps. The discussion covers a large variety of aspects for gear pump design and analysis, including: the analysis on the gear profile design and meshing, the displacement-chamber geometric modeling, and the kinematic-flow analysis. They are followed by a dynamic simulation model covering the dynamics of fluids, forces, and micro-motions, together with simulation results that provides the insights into the physics of new-generation gear machines. Multiple experimental results are provided, which show the validity of the simulation models by matching the pressure ripple measurement and the volumetric efficiencies. Furthermore, a linearized analysis on the ripple source of gear pumps are described, in order to provide the connection and understanding of the pump-generated ripple to the higher-level system analysis, which is also missing from the past academia research. In addition, the some of the models are utilized in optimization studies. These optimization results show the potentials of using the proposed approach of analysis to improve the existing designs as well as development of more efficient and silent units.</p><div><br></div>

  1. 10.25394/pgs.7418522.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/7418522
Date16 January 2020
CreatorsXinran Zhao (5930489)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/Kinematic_Analysis_Numerical_Modeling_and_Design_Optimization_of_Helical_External_Gear_Pumps/7418522

Page generated in 0.003 seconds