Return to search

Models for Quantitative Distributed Systems and Multi-Valued Logics

We investigate weighted asynchronous cellular automata with weights in valuation monoids. These automata form a distributed extension of weighted finite automata and allow us to model concurrency. Valuation monoids are abstract weight structures that include semirings and (non-distributive) bounded lattices but also offer the possibility to model average behaviors. We prove that weighted asynchronous cellular automata and weighted finite automata which satisfy an I-diamond property are equally expressive. Depending on the properties of the valuation monoid, we characterize this expressiveness by certain syntactically restricted fragments of weighted MSO logics. Finally, we define the quantitative model-checking problem for distributed systems and show how it can be reduced to the corresponding problem
for sequential systems.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:17230
Date26 February 2018
CreatorsHuschenbett, Martin
ContributorsDroste, Manfred, Universität Leipzig
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:masterThesis, info:eu-repo/semantics/masterThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relationurn:nbn:de:bsz:15-qucosa2-163403, qucosa:16340

Page generated in 0.0019 seconds