Return to search

Multi-agent route planning for uncrewed aircraft systems operating in U-space airspace

Society today brings a high pace development and demand of Artificial intelligence systems as well as robotics. To further expand and to take one step closer to have Unmanned Aerial Vehicles (UAVs) working in the cities, the European Union Aviation Safety Agency launched a project that introduces U-space airspace, an airspace where UAVs, for instance, are allowed to operate for commercial services.The problems defined for U-space airspace resemble problems defined in the area of multi-agent path finding, such as scaling and traffic etc., resulting an interest to research whether MAPF-solutions can be applied to U-space scenarios. The following thesis extends the state-of-the-art MAPF-algorithm Continuous-time Conflict based search (CCBS) to handle simplified U-space scenarios, as well as extend other A*-based algorithms, such as a version of the Receding Horizon Lattice-based Motion Planning named Extended Multi-agent A* algorithm with Wait-Time (EMAWT) and an extended A* named Extended Multi-agent A* algorithm (EMA) to handle them. Comparisons of the three algorithms resulted in the EMAWT being the most reliable and stable solution throughout all tests, whilst for fewer agents, the CCBS being the clear best solution.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-199046
Date January 2023
CreatorsAyoub, Yohan
PublisherLinköpings universitet, Artificiell intelligens och integrerade datorsystem
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0095 seconds