Return to search

Design of an Asynchronous Ring Bus Architecture for Multi-Core Systems

In the multi-core systems, the data transfer between cores becomes a major challenge. The on-chip interconnect networks should be low latency, high throughput, scalability, better router or arbitration strategy, and low power consumption. An asynchronous ring bus, which is 33 bit width, adopting dual-rail single-track data protocol is proposed in this thesis. It provides not only robust but also high-speed asynchronous circuits condition. Owing to asynchronous circuits design, there are different transfer times in different hop counts. The shorter the distance is, the faster the data can be transferred. Unlink the synchronous ring bus, the bus frequency must be limited by the longest hop count latency. On the other hand, the transmission time of asynchronous circuits will not be held up by the longest distance even though the number of core is increased. For providing higher throughput, multiple cores which are able to access the bus simultaneously make a direct connection between each other. In bus arbitration, distribution arbiter is adopted to arbitrate the right to use the bus and solve the collision. Finally, the system performance in different arbitration strategies has been estimated in TSMC 0.18£gm process in this thesis. The transmission time of the shortest distance is 1.5 ns approximately, and the longest distance first has a better performance in different arbitration strategies.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0818110-131743
Date18 August 2010
CreatorsLei, Kin-fong
ContributorsChung-ping Chung, Shen-fu Hsiao, Jih-ching Chiu, Chia-Hung Yeh
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0818110-131743
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0019 seconds