This thesis presents a real-time multi-face tracking system, which is able to track multiple faces for live videos, broadcast, real-time conference recording, etc. The real-time output is one of the most significant advantages. Our proposed tracking system is comprised of three parts: face detection, feature extraction and tracking. We deploy a three-layer Convolutional Neural Network (CNN) to detect a face, a one-layer CNN to extract the features of a detected face and a shallow network for face tracking based on the extracted feature maps of the face.
The performance of our multi-face tracking system enables the tracker to run in real-time without any on-line training. This algorithm does not need to change any parameters according to different input video conditions, and the runtime cost will not be affected significantly by an the increase in the number of faces being tracked. In addition, our proposed tracker can overcome most of the generally difficult tracking conditions which include video containing a camera cut, face occlusion, false positive face detection, false negative face detection, e.g. due to faces at the image boundary or faces shown in profile. We use two commonly used metrics to evaluate the performance of our multi-face tracking system demonstrating that our system achieves accurate results. Our multi-face tracker achieves an average runtime cost around 0.035s with GPU acceleration and this runtime cost is close to stable even if the number of tracked faces increases. All the evaluation results and comparisons are tested with four commonly used video data sets.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/36707 |
Date | January 2017 |
Creators | Li, Xile |
Contributors | Lang, Jochen |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds