Return to search

Multi-view Video Coding Via Dense Depth Field

Emerging 3-D applications and 3-D display technologies raise
some transmission problems of the next-generation multimedia data.
Multi-view Video Coding (MVC) is one of the challenging topics in
this area, that is on its road for standardization via ISO MPEG. In
this thesis, a 3-D geometry-based MVC approach is proposed and
analyzed in terms of its compression performance. For this purpose,
the overall study is partitioned into three preceding parts. The
first step is dense depth estimation of a view from a fully
calibrated multi-view set. The calibration information and
smoothness assumptions are utilized for determining dense
correspondences via a Markov Random Field (MRF) model, which is
solved by Belief Propagation (BP) method. In the second part, the
estimated dense depth maps are utilized for generating (predicting)
arbitrary (other camera) views of a scene, that is known as novel
view generation. A 3-D warping algorithm, which is followed by an
occlusion-compatible hole-filling process, is implemented for this
aim. In order to suppress the occlusion artifacts, an intermediate
novel view generation method, which fuses two novel views generated
from different source views, is developed. Finally, for the last
part, dense depth estimation and intermediate novel view generation
tools are utilized in the proposed H.264-based MVC scheme for the
removal of the spatial redundancies between different views. The
performance of the proposed approach is compared against the
simulcast coding and a recent MVC proposal, which is expected to be
the standard recommendation for MPEG in the near future. These
results show that the geometric approaches in MVC can still be
utilized, especially in certain 3-D applications, in addition to
conventional temporal motion compensation techniques, although the
rate-distortion performances of geometry-free approaches are quite
superior.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12607517/index.pdf
Date01 September 2006
CreatorsOzkalayci, Burak Oguz
ContributorsAlatan, Aydin
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0023 seconds