Return to search

Modelagem de um processo fermentativo por rede Perceptron multicamadas com atraso de tempo / not available

A utilização de Redes Neurais Artificias para fins de identificação e controle de sistemas dinâmicos têm recebido atenção especial de muitos pesquisadores, principalmente no que se refere a sistemas não lineares. Neste trabalho é apresentado um estudo sobre a utilização de um tipo em particular de Rede Neural Artificial, uma Perceptron Multicamadas com Atraso de Tempo, na estimação de estados da etapa fermentativa do processo de Reichstein para produção de vitamina C. A aplicação de Redes Neurais Artificiais a este processo pode ser justificada pela existência de problemas associados à esta etapa, como variáveis de estado não mensuráveis e com incertezas de medida e não linearidade do processo fermentativo, além da dificuldade em se obter um modelo convencional que contemple todas as fases do processo. É estudado também a eficácia do algoritmo de Levenberg-Marquadt, na aceleração do treinamento da Rede Neural Artificial, além de uma comparação do desempenho de estimação de estados das Redes Neurais Artificiais estudadas com o filtro estendido de Kalman, baseado em um modelo não estruturado do processo fermentativo. A análise do desempenho das Redes Neurais Artificiais estudadas é avaliada em termos de uma figura de mérito baseada no erro médio quadrático sendo feitas considerações quanto ao tipo da função de ativação e o número de unidades da camada oculta. Os dados utilizados para treinamento e avaliação da Redes Neurais Artificiais foram obtidos de um conjunto de ensaios interpolados para o intervalo de amostragem desejado. / ldentification and Control of dynamic systems using Artificial Neural Networks has been widely investigated by many researchers in the last few years, with special attention to the application of these in nonlinear systems. ls this works, a study on the utilization of a particular type of Artificial Neural Networks, a Time Delay Multi Layer Perceptron, in the state estimation of the fermentative phase of the Reichstein process of the C vitamin production. The use of Artificial Neural Networks can be justified by the presence of problems, such as uncertain and unmeasurable state variables and process non-linearity, and by the fact that a conventional model that works on all phases of the fermentative processes is very difficult to obtain. The efficiency of the Levenberg Marquadt algorithm on the acceleration of the training process is also studied. Also, a comparison is performed between the studied Artificial Neural Networks and an extended Kalman filter based on a non-structured model for this fermentative process. The analysis of lhe Artificial Neural Networks is carried out using lhe mean square errors taking into consideration lhe activation function and the number of units presents in the hidden layer. A set of batch experimental runs, interpolated to the desired time interval, is used for training and validating the Artificial Neural Networks.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-22012018-103016
Date09 August 1996
CreatorsManesco, Luis Fernando
ContributorsOliveira, Vilma Alves de
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds