Return to search

Solveurs multifrontaux exploitant des blocs de rang faible : complexité, performance et parallélisme / Block low-rank multifrontal solvers : complexity, performance, and scalability

Nous nous intéressons à l'utilisation d'approximations de rang faible pour réduire le coût des solveurs creux directs multifrontaux. Parmi les différents formats matriciels qui ont été proposés pour exploiter la propriété de rang faible dans les solveurs multifrontaux, nous nous concentrons sur le format Block Low-Rank (BLR) dont la simplicité et la flexibilité permettent de l'utiliser facilement dans un solveur multifrontal algébrique et généraliste. Nous présentons différentes variantes de la factorisation BLR, selon comment les mises à jour de rang faible sont effectuées, et comment le pivotage numérique est géré. D'abord, nous étudions la complexité théorique du format BLR qui, contrairement à d'autres formats comme les formats hiérarchiques, était inconnue jusqu'à présent. Nous prouvons que la complexité théorique de la factorisation multifrontale BLR est asymptotiquement inférieure à celle du solveur de rang plein. Nous montrons ensuite comment les variantes BLR peuvent encore réduire cette complexité. Nous étayons nos bornes de complexité par une étude expérimentale. Après avoir montré que les solveurs multifrontaux BLR peuvent atteindre une faible complexité, nous nous intéressons au problème de la convertir en gains de performance réels sur les architectures modernes. Nous présentons d'abord une factorisation BLR multithreadée, et analysons sa performance dans des environnements multicœurs à mémoire partagée. Nous montrons que les variantes BLR sont cruciales pour exploiter efficacement les machines multicœurs en améliorant l'intensité arithmétique et la scalabilité de la factorisation. Nous considérons ensuite à la factorisation BLR sur des architectures à mémoire distribuée. Les algorithmes présentés dans cette thèse ont été implémentés dans le solveur MUMPS. Nous illustrons l'utilisation de notre approche dans trois applications industrielles provenant des géosciences et de la mécanique des structures. Nous comparons également notre solveur avec STRUMPACK, basé sur des approximations Hierarchically Semi-Separable. Nous concluons cette thèse en rapportant un résultat sur un problème de très grande taille (130 millions d'inconnues) qui illustre les futurs défis posés par le passage à l'échelle des solveurs multifrontaux BLR. / We investigate the use of low-rank approximations to reduce the cost of sparse direct multifrontal solvers. Among the different matrix representations that have been proposed to exploit the low-rank property within multifrontal solvers, we focus on the Block Low-Rank (BLR) format whose simplicity and flexibility make it easy to use in a general purpose, algebraic multifrontal solver. We present different variants of the BLR factorization, depending on how the low-rank updates are performed and on the constraints to handle numerical pivoting. We first investigate the theoretical complexity of the BLR format which, unlike other formats such as hierarchical ones, was previously unknown. We prove that the theoretical complexity of the BLR multifrontal factorization is asymptotically lower than that of the full-rank solver. We then show how the BLR variants can further reduce that complexity. We provide an experimental study with numerical results to support our complexity bounds. After proving that BLR multifrontal solvers can achieve a low complexity, we turn to the problem of translating that low complexity in actual performance gains on modern architectures. We first present a multithreaded BLR factorization, and analyze its performance in shared-memory multicore environments on a large set of real-life problems. We put forward several algorithmic properties of the BLR variants necessary to efficiently exploit multicore systems by improving the arithmetic intensity and the scalability of the BLR factorization. We then move on to the distributed-memory BLR factorization, for which additional challenges are identified and addressed. The algorithms presented throughout this thesis have been implemented within the MUMPS solver. We illustrate the use of our approach in three industrial applications coming from geosciences and structural mechanics. We also compare our solver with the STRUMPACK package, based on Hierarchically Semi-Separable approximations. We conclude this thesis by reporting results on a very large problem (130 millions of unknowns) which illustrates future challenges posed by BLR multifrontal solvers at scale.

Identiferoai:union.ndltd.org:theses.fr/2017TOU30305
Date24 November 2017
CreatorsMary, Théo
ContributorsToulouse 3, Amestoy, Patrick, Buttari, Alfredo
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0019 seconds