Return to search

The Development of a Multifunction UGV

With the increasingly prevalent use of robots, this paper presents the design and evaluation of a multifunctional Unmanned Ground Vehicle (UGV) with an adjustable suspension system, overmolding omni-wheels, and a unique tool head pick-up mechanism. The UGV addresses current adaptability, performance, and versatility limitations across various industries, including agriculture, construction, and surveillance. The adjustable suspension system enhances the UGV's stability and adaptability on diverse terrains, and the overmolding omni-wheels improve maneuverability and durability in off-road conditions. The tool head pick-up mechanism allows for the seamless integration of various tools, enabling the UGV to perform multiple tasks without manual intervention. A comprehensive performance evaluation assessed the UGVs' versatility, load capacity, passability, and adaptability. The results indicate that the proposed UGV design successfully addresses current limitations and has the potential to revolutionize various applications in different industries. Further research and development are necessary to optimize the UGV's performance, safety, and cost-effectiveness. / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/28564
Date January 2023
CreatorsXing, Anzhou
ContributorsYan, Fengjun, Mechanical Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0025 seconds