Return to search

Modellbasierte aktive Schwingungstilgung eines Multilink-Großraummanipulators

Ein Haupteinsatzgebiet der Großraummanipulatoren stellen Betonverteilermasten dar. Aufgrund der langen schmalen Armkonstruktionen fällt bei diesen Maschinen der Trend zum Leichtbau bezüglich der Dynamik besonders ins Gewicht. Um die Vorteile leichter Konstruktionen wie geringere Achslasten, geringerer Kraftstoffverbrauch und kleinere Antriebe nutzen zu können, werden Regelungen benötigt, die die Struktur stabilisieren und ein Schwingen der Mastspitze verhindern.

Zur Systemanalyse und Regelungsauslegung wurde ein Mehrkörpermodell aus starren und elastischen Körpern sowie den notwendigen Hydraulikzylindern erstellt und durch Messungen validiert. Am Modell konnte gezeigt werden, dass die Regelung im letzten Gelenk die Schwingung an der Mastspitze maßgeblich beeinflusst und zur Schwingungstilgung eingesetzt werden kann. Hierfür wird die Bewegung des Verteilermastes durch eine Ausgleichsbewegung im letzten Gelenk kompensiert, sodass die Mastspitze keine starken Schwingungen ausführt.

Die Schwingungen werden über Beschleunigungsmessung detektiert und nach entsprechender Filterung kann die Bewegung bestimmt werden. Mittels Sliding Mode Control erfolgt die Berechnung der schwingungsmindernden Zylinderkraft und garantiert somit Robustheit gegenüber Modellierungsungenauigkeiten und äußeren Störungen. Die Kraftregelung des Hydraulikzylinders wird anschließend über eine Integrator-Backstepping Regelung realisiert.

Die resultierende Schwingungsminimierung beträgt in unterschiedlichsten Maststellungen bis zu 95%. / A special case of multi-link manipulators are truck mounted concrete pumps. Due to the lightweight design of the long and slender boom, it is vulnerable to vibrations. The advantages are smaller masses and therefore less actuation power which results in smaller actuators with less fuel consumption. In order to retain the advantages of lightweight design, special controllers are needed to stabilize the overall system and result in a vibration free motion of the boom tip.

A multibody system with flexible bodies has been built in order to analyse the system's behaviour and to test and design appropriate control strategies. It could be demonstrated, that controlling only the last joint of the boom decisively effects the motion of the boom tip and is therefore suitable to suppress vibrations. The idea is to compensate the boom's motion by adjusting the last joint angle in a way, so that the boom tip stays at its initial position.

In order to implement these findings and obtain a robust control three steps are necessary: the boom's motion must be measured and a vibration reducing force defined which has to be applied by the hydraulic actuator.

The vibrations are detected by acceleration measurement and after appropriate filtering a joint angle trajectory can be determined. The cylinder force is found using Sliding Mode Control which guarantees robustness against modeling inaccuracies and external disturbances. A mathematical description of the last segment is necessary for the design of this nonlinear control strategy. The force control of the hydraulic cylinder is then implemented via backstepping control.

The resulting vibration is minimized by this control by up to 95% at different boom positions.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:30853
Date08 December 2017
CreatorsZorn, Sophie
ContributorsKunze, Günter, Röbenack, Klaus, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds