Return to search

Multidimensional projections for the visual exploration of multimedia data / Projeções multidimensionais para a exploração visual de dados multimídia

The continuously advent of new technologies have made a rich and growing type of information sources available to analyses and investigation. In this context, multidimensional data analysis is considerably important when dealing with such large and complex datasets. Among the possibilities when analyzing such kind of data, applying visualization techniques can help the user find and understand patters, trends and establish new goals. Some applications examples of visualization of multidimensional data analysis goes from image classification, semantic word clouds, cluster analysis of document collection to exploration of multimedia content. This thesis presents several visualization methods to interactively explore multidimensional datasets aimed from specialized to casual users, by making use of both static and dynamic representations created by multidimensional projections. Firstly, we present a multidimen- sional projection technique which faithfully preserves distance and can handle any type of high-dimensional data, demonstrating applications scenarios in both multimedia and text docu- ments collections. Next, we address the task of interpreting projections in 2D, by calculating neighborhood errors. Hereafter, we present a set of interactive visualizations that aim to help users with these tasks by revealing the quality of a projection in 3D, applied in different high dimensional scenarios. In the final part, we address two different approaches to get insight into multimedia data, in special soccer sport videos. While the first make use of multidimensional projections, the second uses efficient visual metaphor to help non-specialist users in browsing and getting insights in soccer matches. / O advento contínuo de novas tecnologias tem criado um tipo rico e crescente de fontes de informação disponíveis para análise e investigação. Neste contexto, a análise de dados multidi- mensional é consideravelmente importante quando se lida com grandes e complexos conjuntos de dados. Dentre as possibilidades ao analisar esses tipos de dados, a aplicação de técnicas de visualização pode auxiliar o usuário a encontrar e entender os padrões, tendências e estabelecer novas metas. Alguns exemplos de aplicações de visualização de análise de dados multidimen- sionais vão de classificação de imagens, nuvens semântica de palavras, e análise de grupos de coleção de documentos, à exploração de conteúdo multimídia. Esta tese apresenta vários métodos de visualização para explorar de forma interativa conjuntos de dados multidimensionais que visam de usuários especializados aos casuais, fazendo uso de ambas representações estáticas e dinâmicas criadas por projeções multidimensionais. Primeiramente, apresentamos uma técnica de projeção multidimensional que preserva fielmente distância e que pode lidar com qualquer tipo de dados com alta-dimensionalidade, demonstrando cenários de aplicações em ambos os casos de multimídia e coleções de documentos de texto. Em seguida, abordamos a tarefa de interpretar as projeções em 2D, calculando erros de vizinhança. Posteriormente, apresentamos um conjunto de visualizações interativas que visam ajudar os usuários com essas tarefas, revelando a qualidade de uma projeção em 3D, aplicadas em diferentes cenários de alta dimensionalidade. Na parte final, discutimos duas abordagens diferentes para obter percepções sobre dados multimídia, em particular vídeos de futebol. Enquanto a primeira abordagem utiliza projeções multidimensionais, a segunda faz uso de uma eficiente metáfora visual para auxiliar usuários não especialistas em navegar e obter conhecimento em partidas de futebol.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-11112016-184130
Date17 June 2016
CreatorsDanilo Barbosa Coimbra
ContributorsFernando Vieira Paulovich, Alexandru Cristian Telea, Hugo Alexandre Dantas do Nascimento, Maria Cristina Ferreira de Oliveira, Paulo Aristarco Pagliosa, Alexandru Cristian Telea, Ricardo da Silva Torres
PublisherUniversidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds