Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-09-22T14:00:22Z
No. of bitstreams: 2
Tese - Daywes Pinheiro Neto - 2017.pdf: 2567797 bytes, checksum: e19e41358dab14d4c81db95a21c6f3ce (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-09-22T14:01:46Z (GMT) No. of bitstreams: 2
Tese - Daywes Pinheiro Neto - 2017.pdf: 2567797 bytes, checksum: e19e41358dab14d4c81db95a21c6f3ce (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-09-22T14:01:46Z (GMT). No. of bitstreams: 2
Tese - Daywes Pinheiro Neto - 2017.pdf: 2567797 bytes, checksum: e19e41358dab14d4c81db95a21c6f3ce (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-08-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work presents a methodology for multiobjective optimization applied to risk analysis of investment in electricity generation from renewable sources. Analysis of hydro (large-scale and small-scale), wind, and photovoltaic energy is carried out considering the economic profile and demand of the investor. The methodology of risk analysis applies the Monte Carlo method to generate synthetic time series of the random variables. The investment analysis approaches are made for individual sources and also for different portfolios, using detailed modeling for the cash flow. The proposed mathematical modeling of multiobjective optimization takes into account aspects of commercialization, legislation, taxation, financing, and the investor's demand. The results provide information of the generation potential, statistical indicators of the Net Present Value and Modified Internal Rate of Return, as well as the Pareto frontiers. Thus, the investor can choose the best portfolio with hydro, wind and photovoltaic energy which satisfies their demand characteristics and their financial risk profile. Therefore, this work offers a valuable tool to support decision making and to contribute with the electric sector development. / Este trabalho apresenta metodologia para otimização multiobjetivo aplicada à análise de risco de investimento em geração de energia elétrica a partir de fontes renováveis. Realiza-se análise das fontes hidrelétrica (grande e pequeno porte), eólica e solar fotovoltaica, considerando o perfil econômico e a demanda do investidor. Para cada fonte, será apresentada metodologia de análise de risco que utiliza modelos econométricos, com a aplicação do método de Monte Carlo, para geração de séries sintéticas das variáveis aleatórias. São apresentadas abordagens de análise de investimento considerando as fontes separadamente e também a formação de portfólios, utilizando detalhada modelagem para o fluxo de caixa. É proposta modelagem matemática de otimização multiobjetivo que considera os aspectos de comercialização no Ambiente de Contratação Livre e no Ambiente de Contratação Regulado, a legislação pertinente ao setor elétrico e o atendimento à demanda do projeto. Os resultados fornecem informações do potencial de geração, indicadores estatísticos das distribuições de probabilidade do Valor Presente Líquido, da Taxa Interna de Retorno Modificada e do Payback Descontado, e também fronteiras de Pareto com as soluções ótimas para investimento, onde o investidor poderá optar pela melhor carteira de investimento, composta por usinas PCH, eólica e solar fotovoltaica, que satisfaz suas características de demanda e seu perfil de risco financeiro. Portanto, este trabalho oferece ferramenta de apoio à tomada de decisão que visa contribuir para o desenvolvimento do setor elétrico.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/7793 |
Date | 31 August 2017 |
Creators | Pinheiro Neto, Daywes |
Contributors | Calixto, Wesley Pacheco, Domingues, Elder Geraldo, Calixto, Wesley Pacheco, Domingues, Elder Geraldo, Coimbra, António Paulo, Peretta, Igor Santos, Fonseca, Regina Celia Bueno da Fonseca (MAT/IFG) |
Publisher | Universidade Federal de Goiás, Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC), UFG, Brasil, Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG |
Rights | http://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess |
Relation | -5088589215393046129, 600, 600, 600, 600, -7705723421721944646, -1431013593610671097, 2075167498588264571 |
Page generated in 0.0025 seconds