Simulating the exact chaotic turbulent flow field about any geometry is a dilemma between accuracy and computational resources, which has been continuously studied for just over a hundred years. This thesis is a complete walk-through of the entire process utilized to approximate the flow ingested by a Sevik-type rotor based on solutions to the Reynolds Averaged Navier-Stokes equations (RANS). The Multiple Reference Frame fluid model is utilized by the code of ANSYS-FLUENT and results are validated by experimental wake data. Three open rotor configurations are studied including a uniform inflow and the rotor near a plate with and without a thick boundary layer. Furthermore, observations are made to determine the variation in velocity profiles of the ingested turbulent flow due to varying flow conditions. / by Felipe Ferreira Lachowski. / Thesis (M.S.C.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_4105 |
Contributors | Lachowski, Felipe Ferreira., College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Text, Electronic Thesis or Dissertation |
Format | xii, 179 p. : ill. (some col.), electronic |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0019 seconds