Title: Multidimensional statistics and applications to study genes Author: Mgr. Peter Bubelíny Department: Department of probability and mathematical statistics Supervisor: prof. Lev Klebanov, DrSc., KPMS MFF UK Abstract: Microarray data of gene expressions consist of thousands of genes and just some tens of observations. Moreover, genes are highly correlated between themselves and contain systematic errors. Hence the magnitude of these data does not afford us to estimate their correlation structure. In many statistical problems with microarray data, we have to test some thousands of hypotheses simultaneously. Due to dependence between genes, p-values of these hypotheses are dependent as well. In this work, we compared conve- nient multiple testing procedures reasonable for dependent hypotheses. The common manner to make microarray data more uncorrelated and partially eliminate systematic errors is normalizing them. We proposed some new normalizations and studied how different normalizations influence hypothe- ses testing. Moreover, we compared tests for finding differentially expressed genes or gene sets and identified some interesting properties of some tests such as bias of two-sample Kolmogorov-Smirnov test and interesting behav- ior of Hotelling's test for dependent components of observations. In the end of...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:336952 |
Date | January 2014 |
Creators | Bubelíny, Peter |
Contributors | Klebanov, Lev, Jurečková, Jana, Kalina, Jan |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds