Cloud radio access network (C-RAN) is a promising architecture for the next-generation RAN to meet the diverse and stringent requirements envisioned by fifth generation mobile communication systems (5G) and future generation mobile networks. C-RAN offers several advantages, such as reduced capital expenditure (CAPEX) and operational expenditure (OPEX), increased spectral efficiency (SE), higher capacity and improved cell-edge performance, and efficient hardware utilization through resource sharing and network function virtualization (NFV). However, these centralization gains come with the need for a fronthaul, which is the transport link connecting remote radio units (RRUs) to the base band unit (BBU) pool. In conventional C-RAN, legacy common public radio interface (CPRI) protocol is used on the fronthaul network to transport the raw, unprocessed baseband in-phase/quadrature-phase (I/Q) samples between the BBU and the RRUs, and it demands a huge fronthaul bandwidth, a strict low-latency, in the order of a few hundred microseconds, and a very high reliability. Hence, in order to relax the excessive fronthaul bandwidth and stringent low-latency requirements, as well as to enhance the flexibility of the fronthaul, it is utmost important to redesign the fronthaul, while still profiting from the acclaimed centralization benefits. Therefore, a flexibly centralized C-RAN with different functional splits has been introduced. In addition, 5G mobile fronthaul (often also termed as an evolved fronthaul ) is envisioned to be packet-based, utilizing the Ethernet as a transport technology. In this thesis, to circumvent the fronthaul bandwidth constraint, a packetized fronthaul considering an appropriate functional split such that the fronthaul data rate is coupled with actual user data rate, unlike the classical C-RAN where fronthaul data rate is always static and independent of the traffic load, is justifiably chosen. We adapt queuing and spatial traffic models to derive the mathematical expressions for statistical multiplexing gains that can be obtained from the randomness in the user traffic. Through this, we show that the required fronthaul bandwidth can be reduced significantly, depending on the overall traffic demand, correlation distance and outage probability. Furthermore, an iterative optimization algorithm is developed, showing the impacts of number of pilots on a bandwidth-constrained fronthaul. This algorithm achieves additional reduction in the required fronthaul bandwidth. Next, knowing the multiplexing gains and possible fronthaul bandwidth reduction, it
is beneficial for the mobile network operators (MNOs) to deploy the optical transceiver (TRX) modules in C-RAN cost efficiently. For this, using the same framework, a cost
model for fronthaul TRX cost optimization is presented. This is essential in C-RAN, because in a wavelength division multiplexing-passive optical network (WDM-PON) system,
TRXs are generally deployed to serve at a peak load. But, because of variations in the traffic demands, owing to tidal effect, the fronthaul can be dimensioned requiring a lower
capacity allowing a reasonable outage, thus giving rise to cost saving by deploying fewer TRXs, and energy saving by putting the unused TRXs in sleep mode.
The second focus of the thesis is the fronthaul latency analysis, which is a critical performance metric, especially for ultra-reliable and low latency communication (URLLC).
An analytical framework to calculate the latency in the uplink (UL) of C-RAN massive multiple-input multiple-output (MIMO) system is presented. For this, a continuous-time
queuing model for the Ethernet switch in the fronthaul network, which aggregates the UL traffic from several massive MIMO-aided RRUs, is considered. The closed-form solutions for the moment generating function (MGF) of sojourn time, waiting time and queue length distributions are derived using Pollaczek–Khinchine formula for our M/HE/1 queuing model, and evaluated via numerical solutions. In addition, the packet loss rate – due to the inability of the packets to reach the destination in a certain time – is derived. Due to the slotted nature of the UL transmissions, the model is extended to a discrete-time queuing model. The impact of the packet arrival rate, average packet size, SE of users, and fronthaul capacity on the sojourn time, waiting time and queue length distributions are analyzed. While offloading more signal processing functionalities to the RRU reduces the required fronthaul bandwidth considerably, this increases the complexity at the RRU. Hence, considering the 5G New Radio (NR) flexible numerology and XRAN functional split with a detailed radio frequency (RF) chain at the RRU, the total RRU complexity is computed first, and later, a tradeoff between the required fronthaul bandwidth and RRU complexity is analyzed. We conclude that despite the numerous C-RAN benefits, the stringent fronthaul bandwidth and latency constraints must be carefully evaluated, and an optimal functional split is essential to meet diverse set of requirements imposed by new radio access technologies (RATs). / Ein cloud-basiertes Mobilfunkzugangsnetz (cloud radio access network, C-RAN) stellt eine vielversprechende Architektur für das RAN der nächsten Generation dar, um die
vielfältigen und strengen Anforderungen der fünften (5G) und zukünftigen Generationen von Mobilfunknetzen zu erfüllen. C-RAN bietet mehrere Vorteile, wie z.B. reduzierte
Investitions- (CAPEX) und Betriebskosten (OPEX), erhöhte spektrale Effizienz (SE), höhere Kapazität und verbesserte Leistung am Zellrand sowie effiziente Hardwareauslastung durch Ressourcenteilung und Virtualisierung von Netzwerkfunktionen (network function virtualization, NFV). Diese Zentralisierungsvorteile erfordern jedoch eine Transportverbindung (Fronthaul), die die Antenneneinheiten (remote radio units, RRUs) mit dem Pool an Basisbandeinheiten (basisband unit, BBU) verbindet. Im konventionellen C-RAN wird das bestehende CPRI-Protokoll (common public radio interface) für das Fronthaul-Netzwerk verwendet, um die rohen, unverarbeitet n Abtastwerte der In-Phaseund Quadraturkomponente (I/Q) des Basisbands zwischen der BBU und den RRUs zu transportieren. Dies erfordert eine enorme Fronthaul-Bandbreite, eine strenge niedrige Latenz in der Größenordnung von einigen hundert Mikrosekunden und eine sehr hohe Zuverlässigkeit. Um die extrem große Fronthaul-Bandbreite und die strengen Anforderungen an die geringe Latenz zu lockern und die Flexibilität des Fronthauls zu erhöhen, ist es daher äußerst wichtig, das Fronthaul neu zu gestalten und dabei trotzdem von den erwarteten Vorteilen der Zentralisierung zu profitieren. Daher wurde ein flexibel zentralisiertes CRAN mit unterschiedlichen Funktionsaufteilungen eingeführt. Außerdem ist das mobile 5G-Fronthaul (oft auch als evolved Fronthaul bezeichnet) als paketbasiert konzipiert und nutzt Ethernet als Transporttechnologie.
Um die Bandbreitenbeschränkung zu erfüllen, wird in dieser Arbeit ein paketbasiertes Fronthaul unter Berücksichtigung einer geeigneten funktionalen Aufteilung so gewählt,
dass die Fronthaul-Datenrate mit der tatsächlichen Nutzdatenrate gekoppelt wird, im Gegensatz zum klassischen C-RAN, bei dem die Fronthaul-Datenrate immer statisch
und unabhängig von der Verkehrsbelastung ist. Wir passen Warteschlangen- und räumliche Verkehrsmodelle an, um mathematische Ausdrücke für statistische Multiplexing-
Gewinne herzuleiten, die aus der Zufälligkeit im Benutzerverkehr gewonnen werden können. Hierdurch zeigen wir, dass die erforderliche Fronthaul-Bandbreite abhängig von
der Gesamtverkehrsnachfrage, der Korrelationsdistanz und der Ausfallwahrscheinlichkeit deutlich reduziert werden kann. Darüber hinaus wird ein iterativer Optimierungsalgorithmus entwickelt, der die Auswirkungen der Anzahl der Piloten auf das bandbreitenbeschränkte Fronthaul zeigt. Dieser Algorithmus erreicht eine zusätzliche Reduktion der benötigte Fronthaul-Bandbreite. Mit dem Wissen über die Multiplexing-Gewinne und die mögliche Reduktion der Fronthaul-Bandbreite ist es für die Mobilfunkbetreiber (mobile network operators, MNOs) von Vorteil, die Module des optischen Sendeempfängers (transceiver, TRX) kostengünstig im C-RAN einzusetzen. Dazu wird unter Verwendung des gleichen Rahmenwerks ein Kostenmodell zur Fronthaul-TRX-Kostenoptimierung vorgestellt. Dies ist im C-RAN unerlässlich, da in einem WDM-PON-System (wavelength division multiplexing-passive optical network) die TRX im Allgemeinen bei Spitzenlast eingesetzt werden. Aufgrund der Schwankungen in den Verkehrsanforderungen (Gezeiteneffekt) kann das Fronthaul jedoch mit einer geringeren Kapazität dimensioniert werden, die einen vertretbaren Ausfall in Kauf nimmt, was zu Kosteneinsparungen durch den Einsatz von weniger TRXn und Energieeinsparungen durch den Einsatz der ungenutzten TRX im Schlafmodus führt. Der zweite Schwerpunkt der Arbeit ist die Fronthaul-Latenzanalyse, die eine kritische Leistungskennzahl liefert, insbesondere für die hochzuverlässige und niedriglatente Kommunikation (ultra-reliable low latency communications, URLLC). Ein analytisches Modell zur Berechnung der Latenz im Uplink (UL) des C-RAN mit massivem MIMO (multiple input multiple output) wird vorgestellt. Dazu wird ein Warteschlangen-Modell mit kontinuierlicher Zeit für den Ethernet-Switch im Fronthaul-Netzwerk betrachtet, das den UL-Verkehr von mehreren RRUs mit massivem MIMO aggregiert. Die geschlossenen Lösungen für die momenterzeugende Funktion (moment generating function, MGF) von Verweildauer-, Wartezeit- und Warteschlangenlängenverteilungen werden mit Hilfe der Pollaczek-Khinchin-Formel für unser M/HE/1-Warteschlangenmodell hergeleitet und mittels numerischer Verfahren ausgewertet. Darüber hinaus wird die Paketverlustrate derjenigen Pakete, die das Ziel nicht in einer bestimmten Zeit erreichen, hergeleitet. Aufgrund der Organisation der UL-Übertragungen in Zeitschlitzen wird das Modell zu einem Warteschlangenmodell mit diskreter Zeit erweitert. Der Einfluss der Paketankunftsrate, der durchschnittlichen Paketgröße, der SE der Benutzer und der Fronthaul-Kapazität auf die Verweildauer-, dieWartezeit- und dieWarteschlangenlängenverteilung wird analysiert. Während das Verlagern weiterer Signalverarbeitungsfunktionalitäten an die RRU die erforderliche Fronthaul-Bandbreite erheblich reduziert, erhöht sich dadurch im Gegenzug die Komplexität der RRU. Daher wird unter Berücksichtigung der flexiblen Numerologie von 5G New Radio (NR) und der XRAN-Funktionenaufteilung mit einer detaillierten
RF-Kette (radio frequency) am RRU zunächst die gesamte RRU-Komplexität berechnet und später ein Kompromiss zwischen der erforderlichen Fronthaul-Bandbreite und der
RRU-Komplexität untersucht. Wir kommen zu dem Schluss, dass trotz der zahlreichen Vorteile von C-RAN die strengen Bandbreiten- und Latenzbedingungen an das Fronthaul sorgfältig geprüft werden müssen und eine optimale funktionale Aufteilung unerlässlich ist, um die vielfältigen Anforderungen der neuen Funkzugangstechnologien (radio access technologies, RATs) zu erfüllen.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:70855 |
Date | 20 May 2020 |
Creators | Chaudhary, Jay Kant |
Contributors | Mayr, Christian Georg, Fettweis, Gerhard, Bjørnstad, Steinar, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0034 seconds