Le problème principalement étudié dans ce manuscrit est la stabilisation d'orbites périodiques de systèmes dynamiques non linéaires à l'aide d'une commande de rétroaction (feedback). Le but des méthodes de contrôle proposées ici est d'obtenir une oscillation périodique stable. Ces méthodes de contrôle sont appliquées à des systèmes présentant des orbites périodiques instables dans l'espace d'état, et ces dernières sont les orbites destinées à être stabilisées. Les méthodes proposées ici sont telles que l'oscillation stable qui en résulte est obtenue avec un effort de contrôle faible, et que la valeur de la commande tend vers zéro lorsque la trajectoire tend vers l'orbite stabilisée. La stabilité locale des orbites périodiques est analysée par l'étude de la stabilité des systèmes linéaires périodiques à l'aide de la théorie de Floquet. Ces systèmes linéaires sont obtenus par linéarisation des trajectoires au voisinage de l'orbite périodique. Les méthodes de contrôle utilisées ici pour la stabilisation des orbites périodiques sont une loi de commande proportionnelle, une loi de commande de rétroaction retardée et une loi de commande de rétroaction basée sur une prédiction. Ces méthodes sont appliquées aux systèmes en temps discret et aux systèmes en temps continu avec les modifications nécessaires. Les contributions principales de cette thèse sont associées à ces méthodes, proposant une méthode alternative de design de gain, une nouvelle loi de commande et des résultats associés.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00846887 |
Date | 25 June 2013 |
Creators | Pereira Das Chagas, Thiago |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0068 seconds