Une classe générale de statistiques de rangs basées sur la fonction caractéristique est introduite afin de tester l'hypothèse composite d'appartenance à une famille de copules multidimensionnelles. Ces statistiques d'adéquation sont définies comme des distances fonctionnelles de type L_2 pondérées entre une version non paramétrique et une version semi-paramétrique de la fonction caractéristique que l'on peut associer à une copule. Il est démontré que ces statistiques de test se comportent asymptotiquement comme des V-statistiques dégénérées d'ordre quatre et que leurs lois limites s'expriment en termes de sommes pondérées de variables khi-deux indépendantes. La convergence des tests sous des alternatives générales est établie, de même que la validité du bootstrap paramétrique pour le calcul de valeurs critiques. Le comportement des nouveaux tests sous des tailles d'échantillons faibles et modérées est étudié à l'aide de simulations et est comparé à celui d'un test concurrent fondé sur la copule empirique. La méthodologie est finalement illustrée sur un jeu de données à plusieurs dimensions.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/11255 |
Date | January 2017 |
Creators | Bahraoui, Tarik |
Contributors | Bouezmarni, Taoufik, Quessy, Jean-François |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | French, English |
Detected Language | French |
Type | Thèse |
Rights | © Tarik Bahraoui |
Page generated in 0.002 seconds