Return to search

Simulation and emulation of massively parallel processor for solving constraint satisfaction problems based on oracles

Most part of my thesis is devoted to efficient automated logic synthesis of oracle processors. These Oracle Processors are of interest to several modern technologies, including Scheduling and Allocation, Image Processing and Robot Vision, Computer Aided Design, Games and Puzzles, and Cellular Automata, but so far the most important practical application is to build logic circuits to solve various practical Constraint Satisfaction Problems in Intelligent Robotics. For instance, robot path planning can be reduced to Satisfiability. In short, an oracle is a circuit that has some proposition of solution on the inputs and answers yes/no to this proposition. In other language, it is a predicate or a concept-checking machine. Oracles have many applications in AI and theoretical computer science but so far they were not used much in hardware architectures. Systematic logic synthesis methodologies for oracle circuits were so far not a subject of a special research. It is not known how big advantages these processors will bring when compared to parallel processing with CUDA/GPU processors, or standard PC processing. My interest in this thesis is only in architectural and logic synthesis aspects and not in physical (technological) design aspects of these circuits. In future, these circuits will be realized using reversible, nano and some new technologies, but the interest in this thesis is not in the future realization technologies. We want just to answer the following question: Is there any speed advantage of the new oracle-based architectures, when compared with standard serial or parallel processors?

Identiferoai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-1010
Date01 January 2011
CreatorsChaudhari, Gunavant Dinkar
PublisherPDXScholar
Source SetsPortland State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations and Theses

Page generated in 0.0022 seconds